Abstract:This research examines the use of Reinforcement Learning from AI Feedback (RLAIF) techniques to improve healthcare dialogue models, with the aim of tackling the challenges of preference-aligned data annotation while reducing the reliance on medical experts. We argue that the primary challenges in current RLAIF research for healthcare are the limitations of automated evaluation methods and the difficulties in accurately representing physician preferences. To address these challenges, we present a new evaluation framework based on standardized patient examinations. This framework is designed to objectively assess the effectiveness of large language models (LLMs) in guiding users and following instructions, enabling a comprehensive comparison across different models. Furthermore, our investigation of effective ways to express physician preferences using Constitutional AI algorithms highlighted the particular effectiveness of flowcharts. Utilizing this finding, we introduce an innovative agent-based approach for annotating preference data. This approach autonomously creates medical dialogue flows tailored to the patient's condition, demonstrates strong generalization abilities, and reduces the need for expert involvement. Our results show that the agent-based approach outperforms existing RLAIF annotation methods in standardized patient examinations and surpasses current open source medical dialogue LLMs in various test scenarios.
Abstract:The use of large language models in medical dialogue generation has garnered significant attention, with a focus on improving response quality and fluency. While previous studies have made progress in optimizing model performance for single-round medical Q&A tasks, there is a need to enhance the model's capability for multi-round conversations to avoid logical inconsistencies. To address this, we propose an approach called preference learning from process feedback~(PLPF), which integrates the doctor's diagnostic logic into LLMs. PLPF involves rule modeling, preference data generation, and preference alignment to train the model to adhere to the diagnostic process. Experimental results using Standardized Patient Testing show that PLPF enhances the diagnostic accuracy of the baseline model in medical conversations by 17.6%, outperforming traditional reinforcement learning from human feedback. Additionally, PLPF demonstrates effectiveness in both multi-round and single-round dialogue tasks, showcasing its potential for improving medical dialogue generation.
Abstract:The Multi-Modal Large Language Model (MLLM) refers to an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data. Spatial awareness stands as one of the crucial abilities of MLLM, encompassing diverse skills related to understanding spatial relationships among objects and between objects and the scene area. Industries such as autonomous driving, smart healthcare, robotics, virtual, and augmented reality heavily demand MLLM's spatial awareness capabilities. However, there exists a noticeable gap between the current spatial awareness capabilities of MLLM and the requirements set by human needs. To address this issue, this paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries. Specifically, for a particular multi-modal task, we utilize algorithms for acquiring geometric spatial information and scene graphs to obtain relevant geometric spatial information and scene details of objects involved in the query. Subsequently, based on this information, we direct MLLM to address spatial awareness-related queries posed by the user. Extensive experiments were conducted in benchmarks such as MME, MM-Vet, and other multi-modal large language models. The experimental results thoroughly confirm the efficacy of the proposed method in enhancing the spatial awareness tasks and associated tasks of MLLM.
Abstract:Medical dialogue systems aim to provide accurate answers to patients, necessitating specific domain knowledge. Recent advancements in Large Language Models (LLMs) have demonstrated their exceptional capabilities in the medical Q&A domain, indicating a rich understanding of common sense. However, LLMs are insufficient for direct diagnosis due to the absence of diagnostic strategies. The conventional approach to address this challenge involves expensive fine-tuning of LLMs. Alternatively, a more appealing solution is the development of a plugin that empowers LLMs to perform medical conversation tasks. Drawing inspiration from in-context learning, we propose PlugMed, a Plug-and-Play Medical Dialogue System that facilitates appropriate dialogue actions by LLMs through two modules: the prompt generation (PG) module and the response ranking (RR) module. The PG module is designed to capture dialogue information from both global and local perspectives. It selects suitable prompts by assessing their similarity to the entire dialogue history and recent utterances grouped by patient symptoms, respectively. Additionally, the RR module incorporates fine-tuned SLMs as response filters and selects appropriate responses generated by LLMs. Moreover, we devise a novel evaluation method based on intent and medical entities matching to assess the efficacy of dialogue strategies in medical conversations more effectively. Experimental evaluations conducted on three unlabeled medical dialogue datasets, including both automatic and manual assessments, demonstrate that our model surpasses the strong fine-tuning baselines.