Abstract:The ability to autonomously explore and resolve tasks with minimal human guidance is crucial for the self-development of embodied intelligence. Although reinforcement learning methods can largely ease human effort, it's challenging to design reward functions for real-world tasks, especially for high-dimensional robotic control, due to complex relationships among joints and tasks. Recent advancements large language models (LLMs) enable automatic reward function design. However, approaches evaluate reward functions by re-training policies from scratch placing an undue burden on the reward function, expecting it to be effective throughout the whole policy improvement process. We argue for a more practical strategy in robotic autonomy, focusing on refining existing policies with policy-dependent reward functions rather than a universal one. To this end, we propose a novel reward-policy co-evolution framework where the reward function and the learned policy benefit from each other's progressive on-the-fly improvements, resulting in more efficient and higher-performing skill acquisition. Specifically, the reward evolution process translates the robot's previous best reward function, descriptions of tasks and environment into text inputs. These inputs are used to query LLMs to generate a dynamic amount of reward function candidates, ensuring continuous improvement at each round of evolution. For policy evolution, our method generates new policy populations by hybridizing historically optimal and random policies. Through an improved Bayesian optimization, our approach efficiently and robustly identifies the most capable and plastic reward-policy combination, which then proceeds to the next round of co-evolution. Despite using less data, our approach demonstrates an average normalized improvement of 95.3% across various high-dimensional robotic skill learning tasks.
Abstract:Learning behavior in legged robots presents a significant challenge due to its inherent instability and complex constraints. Recent research has proposed the use of a large language model (LLM) to generate reward functions in reinforcement learning, thereby replacing the need for manually designed rewards by experts. However, this approach, which relies on textual descriptions to define learning objectives, fails to achieve controllable and precise behavior learning with clear directionality. In this paper, we introduce a new video2reward method, which directly generates reward functions from videos depicting the behaviors to be mimicked and learned. Specifically, we first process videos containing the target behaviors, converting the motion information of individuals in the videos into keypoint trajectories represented as coordinates through a video2text transforming module. These trajectories are then fed into an LLM to generate the reward function, which in turn is used to train the policy. To enhance the quality of the reward function, we develop a video-assisted iterative reward refinement scheme that visually assesses the learned behaviors and provides textual feedback to the LLM. This feedback guides the LLM to continually refine the reward function, ultimately facilitating more efficient behavior learning. Experimental results on tasks involving bipedal and quadrupedal robot motion control demonstrate that our method surpasses the performance of state-of-the-art LLM-based reward generation methods by over 37.6% in terms of human normalized score. More importantly, by switching video inputs, we find our method can rapidly learn diverse motion behaviors such as walking and running.
Abstract:Controlling a non-statically bipedal robot is challenging due to the complex dynamics and multi-criterion optimization involved. Recent works have demonstrated the effectiveness of deep reinforcement learning (DRL) for simulation and physically implemented bipeds. In these methods, the rewards from different criteria are normally summed to learn a single value function. However, this may cause the loss of dependency information between hybrid rewards and lead to a sub-optimal policy. In this work, we propose a novel policy gradient reinforcement learning for biped locomotion, allowing the control policy to be simultaneously optimized by multiple criteria using a dynamic mechanism. Our proposed method applies a multi-head critic to learn a separate value function for each component reward function. This also leads to hybrid policy gradients. We further propose dynamic weight for hybrid policy gradients to optimize the policy with different priorities. This hybrid and dynamic policy gradient (HDPG) design makes the agent learn more efficiently. We showed that the proposed method outperforms summed-up-reward approaches and is able to transfer to physical robots. The MuJoCo results further demonstrate the effectiveness and generalization of our HDPG.