Computer Science and Engineering, University of California San Diego, San Diego, USA
Abstract:This paper introduces an innovative approach to open world recognition (OWR), where we leverage knowledge acquired from known objects to address the recognition of previously unseen objects. The traditional method of object modeling relies on supervised learning with strict closed-set assumptions, presupposing that objects encountered during inference are already known at the training phase. However, this assumption proves inadequate for real-world scenarios due to the impracticality of accounting for the immense diversity of objects. Our hypothesis posits that object appearances can be represented as collections of "shareable" mid-level features, arranged in constellations to form object instances. By adopting this framework, we can efficiently dissect and represent both known and unknown objects in terms of their appearance cues. Our paper introduces a straightforward yet elegant method for modeling novel or unseen objects, utilizing established appearance cues and accounting for inherent uncertainties. This representation not only enables the detection of out-of-distribution objects or novel categories among unseen objects but also facilitates a deeper level of reasoning, empowering the identification of the superclass to which an unknown instance belongs. This novel approach holds promise for advancing open world recognition in diverse applications.
Abstract:Humans and other animals aptly exhibit general intelligence behaviors in solving a variety of tasks with flexibility and ability to adapt to novel situations by reusing and applying high level knowledge acquired over time. But artificial agents are more of a specialist, lacking such generalist behaviors. Artificial agents will require understanding and exploiting critical structured knowledge representations. We present a metacognitive generalization framework, Knowledge-Interaction-eXecution (KIX), and argue that interactions with objects leveraging type space facilitate the learning of transferable interaction concepts and generalization. It is a natural way of integrating knowledge into reinforcement learning and promising to act as an enabler for autonomous and generalist behaviors in artificial intelligence systems.
Abstract:In this paper, we propose Saturn, a new data system to improve the efficiency of multi-large-model training (e.g., during model selection/hyperparameter optimization). We first identify three key interconnected systems challenges for users building large models in this setting -- parallelism technique selection, distribution of GPUs over jobs, and scheduling. We then formalize these as a joint problem, and build a new system architecture to tackle these challenges simultaneously. Our evaluations show that our joint-optimization approach yields 39-49% lower model selection runtimes than typical current DL practice.
Abstract:Large language models such as GPT-3 & ChatGPT have transformed deep learning (DL), powering applications that have captured the public's imagination. These models are rapidly being adopted across domains for analytics on various modalities, often by finetuning pre-trained base models. Such models need multiple GPUs due to both their size and computational load, driving the development of a bevy of "model parallelism" techniques & tools. Navigating such parallelism choices, however, is a new burden for end users of DL such as data scientists, domain scientists, etc. who may lack the necessary systems knowhow. The need for model selection, which leads to many models to train due to hyper-parameter tuning or layer-wise finetuning, compounds the situation with two more burdens: resource apportioning and scheduling. In this work, we tackle these three burdens for DL users in a unified manner by formalizing them as a joint problem that we call SPASE: Select a Parallelism, Allocate resources, and SchedulE. We propose a new information system architecture to tackle the SPASE problem holistically, representing a key step toward enabling wider adoption of large DL models. We devise an extensible template for existing parallelism schemes and combine it with an automated empirical profiler for runtime estimation. We then formulate SPASE as an MILP. We find that direct use of an MILP-solver is significantly more effective than several baseline heuristics. We optimize the system runtime further with an introspective scheduling approach. We implement all these techniques into a new data system we call Saturn. Experiments with benchmark DL workloads show that Saturn achieves 39-49% lower model selection runtimes than typical current DL practice.
Abstract:Determining accurate bird's eye view (BEV) positions of objects and tracks in a scene is vital for various perception tasks including object interactions mapping, scenario extraction etc., however, the level of supervision required to accomplish that is extremely challenging to procure. We propose a light-weight, weakly supervised method to estimate 3D position of objects by jointly learning to regress the 2D object detections and scene's depth prediction in a single feed-forward pass of a network. Our proposed method extends a center-point based single-shot object detector, and introduces a novel object representation where each object is modeled as a BEV point spatio-temporally, without the need of any 3D or BEV annotations for training and LiDAR data at query time. The approach leverages readily available 2D object supervision along with LiDAR point clouds (used only during training) to jointly train a single network, that learns to predict 2D object detection alongside the whole scene's depth, to spatio-temporally model object tracks as points in BEV. The proposed method is computationally over $\sim$10x efficient compared to recent SOTA approaches while achieving comparable accuracies on KITTI tracking benchmark.
Abstract:Cross-lingual dubbing of lecture videos requires the transcription of the original audio, correction and removal of disfluencies, domain term discovery, text-to-text translation into the target language, chunking of text using target language rhythm, text-to-speech synthesis followed by isochronous lipsyncing to the original video. This task becomes challenging when the source and target languages belong to different language families, resulting in differences in generated audio duration. This is further compounded by the original speaker's rhythm, especially for extempore speech. This paper describes the challenges in regenerating English lecture videos in Indian languages semi-automatically. A prototype is developed for dubbing lectures into 9 Indian languages. A mean-opinion-score (MOS) is obtained for two languages, Hindi and Tamil, on two different courses. The output video is compared with the original video in terms of MOS (1-5) and lip synchronisation with scores of 4.09 and 3.74, respectively. The human effort also reduces by 75%.
Abstract:Training deep learning (DL) models that do not fit into the memory of a single GPU is a vexed process, forcing users to procure multiple GPUs to adopt model-parallel execution. Unfortunately, sequential dependencies in neural architectures often block efficient multi-device training, leading to suboptimal performance. We present 'model spilling', a technique aimed at models such as Transformers and CNNs to move groups of layers, or shards, between DRAM and GPU memory, thus enabling arbitrarily large models to be trained even on just one GPU. We then present a set of novel techniques leveraging spilling to raise efficiency for multi-model training workloads such as model selection: a new hybrid of task- and model-parallelism, a new shard scheduling heuristic, and 'double buffering' to hide latency. We prototype our ideas into a system we call HYDRA to support seamless single-model and multi-model training of large DL models. Experiments with real benchmark workloads show that HYDRA is over 7x faster than regular model parallelism and over 50% faster than state-of-the-art industrial tools for pipeline parallelism.
Abstract:Fuzzy time series forecasting methods are very popular among researchers for predicting future values as they are not based on the strict assumptions of traditional time series forecasting methods. Non-stochastic methods of fuzzy time series forecasting are preferred by the researchers as they provide more significant forecasting results. There are generally, four factors that determine the performance of the forecasting method (1) number of intervals (NOIs) and length of intervals to partition universe of discourse (UOD) (2) fuzzification rules or feature representation of crisp time series (3) method of establishing fuzzy logic rule (FLRs) between input and target values (4) defuzzification rule to get crisp forecasted value. Considering the first two factors to improve the forecasting accuracy, we proposed a novel non-stochastic method fuzzy time series forecasting in which interval index number and membership value are used as input features to predict future value. We suggested a simple rounding-off range and suitable step size method to find the optimal number of intervals (NOIs) and used fuzzy c-means clustering process to divide UOD into intervals of unequal length. We implement support vector machine (SVM) to establish FLRs. To test our proposed method we conduct a simulated study on five widely used real time series and compare the performance with some recently developed models. We also examine the performance of the proposed model by using multi-layer perceptron (MLP) instead of SVM. Two performance measures RSME and SMAPE are used for performance analysis and observed better forecasting accuracy by the proposed model.
Abstract:Low-latency telerobotics can enable more intricate surface tasks on extraterrestrial planetary bodies than has ever been attempted. For humanity to create a sustainable lunar presence, well-developed collaboration between humans and robots is necessary to perform complex tasks. This paper presents a methodology to assess the human factors, situational awareness (SA) and cognitive load (CL), associated with teleoperated assembly tasks. Currently, telerobotic assembly on an extraterrestrial body has never been attempted, and a valid methodology to assess the associated human factors has not been developed. The Telerobotics Laboratory at the University of Colorado-Boulder created the Telerobotic Simulation System (TSS) which enables remote operation of a rover and a robotic arm. The TSS was used in a laboratory experiment designed as an analog to a lunar mission. The operator's task was to assemble a radio interferometer. Each participant completed this task under two conditions, remote teleoperation (limited SA) and local operation (optimal SA). The goal of the experiment was to establish a methodology to accurately measure the operator's SA and CL while performing teleoperated assembly tasks. A successful methodology would yield results showing greater SA and lower CL while operating locally. Performance metrics showed greater SA and lower CL in the local environment, supported by a 27% increase in the mean time to completion of the assembly task when operating remotely. Subjective measurements of SA and CL did not align with the performance metrics. Results from this experiment will guide future work attempting to accurately quantify the human factors associated with telerobotic assembly. Once an accurate methodology has been developed, we will be able to measure how new variables affect an operator's SA and CL to optimize the efficiency and effectiveness of telerobotic assembly tasks.
Abstract:Morphological segmentation has traditionally been modeled with non-hierarchical models, which yield flat segmentations as output. In many cases, however, proper morphological analysis requires hierarchical structure -- especially in the case of derivational morphology. In this work, we introduce a discriminative, joint model of morphological segmentation along with the orthographic changes that occur during word formation. To the best of our knowledge, this is the first attempt to approach discriminative segmentation with a context-free model. Additionally, we release an annotated treebank of 7454 English words with constituency parses, encouraging future research in this area.