Abstract:Hidden-Markov-model (HMM) based text-to-speech (HTS) offers flexibility in speaking styles along with fast training and synthesis while being computationally less intense. HTS performs well even in low-resource scenarios. The primary drawback is that the voice quality is poor compared to that of E2E systems. A hybrid approach combining HMM-based feature generation and neural-network-based HiFi-GAN vocoder to improve HTS synthesis quality is proposed. HTS is trained on high-resolution mel-spectrograms instead of conventional mel generalized coefficients (MGC), and the output mel-spectrogram corresponding to the input text is used in a HiFi-GAN vocoder trained on Indic languages, to produce naturalness that is equivalent to that of E2E systems, as evidenced from the DMOS and PC tests.
Abstract:This paper proposes an approach to build a high-quality text-to-speech (TTS) system for technical domains using data augmentation. An end-to-end (E2E) system is trained on hidden Markov model (HMM) based synthesized speech and further fine-tuned with studio-recorded TTS data to improve the timbre of the synthesized voice. The motivation behind the work is that issues of word skips and repetitions are usually absent in HMM systems due to their ability to model the duration distribution of phonemes accurately. Context-dependent pentaphone modeling, along with tree-based clustering and state-tying, takes care of unseen context and out-of-vocabulary words. A language model is also employed to reduce synthesis errors further. Subjective evaluations indicate that speech produced using the proposed system is superior to the baseline E2E synthesis approach in terms of intelligibility when combining complementing attributes from HMM and E2E frameworks. The further analysis highlights the proposed approach's efficacy in low-resource scenarios.
Abstract:Cross-lingual dubbing of lecture videos requires the transcription of the original audio, correction and removal of disfluencies, domain term discovery, text-to-text translation into the target language, chunking of text using target language rhythm, text-to-speech synthesis followed by isochronous lipsyncing to the original video. This task becomes challenging when the source and target languages belong to different language families, resulting in differences in generated audio duration. This is further compounded by the original speaker's rhythm, especially for extempore speech. This paper describes the challenges in regenerating English lecture videos in Indian languages semi-automatically. A prototype is developed for dubbing lectures into 9 Indian languages. A mean-opinion-score (MOS) is obtained for two languages, Hindi and Tamil, on two different courses. The output video is compared with the original video in terms of MOS (1-5) and lip synchronisation with scores of 4.09 and 3.74, respectively. The human effort also reduces by 75%.