Abstract:Large Language Models (LLMs) have achieved state-of-the-art performance at zero-shot generation of abstractive summaries for given articles. However, little is known about the robustness of such a process of zero-shot summarization. To bridge this gap, we propose relevance paraphrasing, a simple strategy that can be used to measure the robustness of LLMs as summarizers. The relevance paraphrasing approach identifies the most relevant sentences that contribute to generating an ideal summary, and then paraphrases these inputs to obtain a minimally perturbed dataset. Then, by evaluating model performance for summarization on both the original and perturbed datasets, we can assess the LLM's one aspect of robustness. We conduct extensive experiments with relevance paraphrasing on 4 diverse datasets, as well as 4 LLMs of different sizes (GPT-3.5-Turbo, Llama-2-13B, Mistral-7B, and Dolly-v2-7B). Our results indicate that LLMs are not consistent summarizers for the minimally perturbed articles, necessitating further improvements.
Abstract:Influence functions offer a robust framework for assessing the impact of each training data sample on model predictions, serving as a prominent tool in data-centric learning. Despite their widespread use in various tasks, the strong convexity assumption on the model and the computational cost associated with calculating the inverse of the Hessian matrix pose constraints, particularly when analyzing large deep models. This paper focuses on a classical data-centric scenario--trimming detrimental samples--and addresses both challenges within a unified framework. Specifically, we establish an equivalence transformation between identifying detrimental training samples via influence functions and outlier gradient detection. This transformation not only presents a straightforward and Hessian-free formulation but also provides profound insights into the role of the gradient in sample impact. Moreover, it relaxes the convexity assumption of influence functions, extending their applicability to non-convex deep models. Through systematic empirical evaluations, we first validate the correctness of our proposed outlier gradient analysis on synthetic datasets and then demonstrate its effectiveness in detecting mislabeled samples in vision models, selecting data samples for improving performance of transformer models for natural language processing, and identifying influential samples for fine-tuned Large Language Models.
Abstract:Polarization, declining trust, and wavering support for democratic norms are pressing threats to U.S. democracy. Exposure to verified and quality news may lower individual susceptibility to these threats and make citizens more resilient to misinformation, populism, and hyperpartisan rhetoric. This project examines how to enhance users' exposure to and engagement with verified and ideologically balanced news in an ecologically valid setting. We rely on a large-scale two-week long field experiment (from 1/19/2023 to 2/3/2023) on 28,457 Twitter users. We created 28 bots utilizing GPT-2 that replied to users tweeting about sports, entertainment, or lifestyle with a contextual reply containing two hardcoded elements: a URL to the topic-relevant section of quality news organization and an encouragement to follow its Twitter account. To further test differential effects by gender of the bots, treated users were randomly assigned to receive responses by bots presented as female or male. We examine whether our over-time intervention enhances the following of news media organization, the sharing and the liking of news content and the tweeting about politics and the liking of political content. We find that the treated users followed more news accounts and the users in the female bot treatment were more likely to like news content than the control. Most of these results, however, were small in magnitude and confined to the already politically interested Twitter users, as indicated by their pre-treatment tweeting about politics. These findings have implications for social media and news organizations, and also offer direction for future work on how Large Language Models and other computational interventions can effectively enhance individual on-platform engagement with quality news and public affairs.
Abstract:We characterize and study zero-shot abstractive summarization in Large Language Models (LLMs) by measuring position bias, which we propose as a general formulation of the more restrictive lead bias phenomenon studied previously in the literature. Position bias captures the tendency of a model unfairly prioritizing information from certain parts of the input text over others, leading to undesirable behavior. Through numerous experiments on four diverse real-world datasets, we study position bias in multiple LLM models such as GPT 3.5-Turbo, Llama-2, and Dolly-v2, as well as state-of-the-art pretrained encoder-decoder abstractive summarization models such as Pegasus and BART. Our findings lead to novel insights and discussion on performance and position bias of models for zero-shot summarization tasks.
Abstract:Clustering algorithms are widely used in many societal resource allocation applications, such as loan approvals and candidate recruitment, among others, and hence, biased or unfair model outputs can adversely impact individuals that rely on these applications. To this end, many fair clustering approaches have been recently proposed to counteract this issue. Due to the potential for significant harm, it is essential to ensure that fair clustering algorithms provide consistently fair outputs even under adversarial influence. However, fair clustering algorithms have not been studied from an adversarial attack perspective. In contrast to previous research, we seek to bridge this gap and conduct a robustness analysis against fair clustering by proposing a novel black-box fairness attack. Through comprehensive experiments, we find that state-of-the-art models are highly susceptible to our attack as it can reduce their fairness performance significantly. Finally, we propose Consensus Fair Clustering (CFC), the first robust fair clustering approach that transforms consensus clustering into a fair graph partitioning problem, and iteratively learns to generate fair cluster outputs. Experimentally, we observe that CFC is highly robust to the proposed attack and is thus a truly robust fair clustering alternative.
Abstract:Clustering models constitute a class of unsupervised machine learning methods which are used in a number of application pipelines, and play a vital role in modern data science. With recent advancements in deep learning -- deep clustering models have emerged as the current state-of-the-art over traditional clustering approaches, especially for high-dimensional image datasets. While traditional clustering approaches have been analyzed from a robustness perspective, no prior work has investigated adversarial attacks and robustness for deep clustering models in a principled manner. To bridge this gap, we propose a blackbox attack using Generative Adversarial Networks (GANs) where the adversary does not know which deep clustering model is being used, but can query it for outputs. We analyze our attack against multiple state-of-the-art deep clustering models and real-world datasets, and find that it is highly successful. We then employ some natural unsupervised defense approaches, but find that these are unable to mitigate our attack. Finally, we attack Face++, a production-level face clustering API service, and find that we can significantly reduce its performance as well. Through this work, we thus aim to motivate the need for truly robust deep clustering models.
Abstract:Clustering algorithms are ubiquitous in modern data science pipelines, and are utilized in numerous fields ranging from biology to facility location. Due to their widespread use, especially in societal resource allocation problems, recent research has aimed at making clustering algorithms fair, with great success. Furthermore, it has also been shown that clustering algorithms, much like other machine learning algorithms, are susceptible to adversarial attacks where a malicious entity seeks to subvert the performance of the learning algorithm. However, despite these known vulnerabilities, there has been no research undertaken that investigates fairness degrading adversarial attacks for clustering. We seek to bridge this gap by formulating a generalized attack optimization problem aimed at worsening the group-level fairness of centroid-based clustering algorithms. As a first step, we propose a fairness degrading attack algorithm for k-median clustering that operates under a whitebox threat model -- where the clustering algorithm, fairness notion, and the input dataset are known to the adversary. We provide empirical results as well as theoretical analysis for our simple attack algorithm, and find that the addition of the generated adversarial samples can lead to significantly lower fairness values. In this manner, we aim to motivate fairness degrading adversarial attacks as a direction for future research in fair clustering.
Abstract:Clustering algorithms are widely utilized for many modern data science applications. This motivates the need to make outputs of clustering algorithms fair. Traditionally, new fair algorithmic variants to clustering algorithms are developed for specific notions of fairness. However, depending on the application context, different definitions of fairness might need to be employed. As a result, new algorithms and analysis need to be proposed for each combination of clustering algorithm and fairness definition. Additionally, each new algorithm would need to be reimplemented for deployment in a real-world system. Hence, we propose an alternate approach to fairness in clustering where we augment the original dataset with a small number of data points, called antidote data. When clustering is undertaken on this new dataset, the output is fair, for the chosen clustering algorithm and fairness definition. We formulate this as a general bi-level optimization problem which can accommodate any center-based clustering algorithms and fairness notions. We then categorize approaches for solving this bi-level optimization for different problem settings. Extensive experiments on different clustering algorithms and fairness notions show that our algorithms can achieve desired levels of fairness on many real-world datasets with a very small percentage of antidote data added. We also find that our algorithms achieve lower fairness costs and competitive clustering performance compared to other state-of-the-art fair clustering algorithms.
Abstract:Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science and machine learning, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples themselves. HAC algorithms are employed in a number of applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair-- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not be discriminatory against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. Therefore, in this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. To the best of our knowledge, this is the first work that studies fairness for HAC algorithms. We also propose an algorithm with lower asymptotic time complexity than HAC algorithms that can rectify existing HAC outputs and make them subsequently fair as a result. Moreover, we carry out extensive experiments on multiple real-world UCI datasets to demonstrate the working of our algorithms.
Abstract:Clustering algorithms are used in a large number of applications and play an important role in modern machine learning-- yet, adversarial attacks on clustering algorithms seem to be broadly overlooked unlike supervised learning. In this paper, we seek to bridge this gap by proposing a black-box adversarial attack for clustering models for linearly separable clusters. Our attack works by perturbing a single sample close to the decision boundary, which leads to the misclustering of multiple unperturbed samples, named spill-over adversarial samples. We theoretically show the existence of such adversarial samples for the K-Means clustering. Our attack is especially strong as (1) we ensure the perturbed sample is not an outlier, hence not detectable, and (2) the exact metric used for clustering is not known to the attacker. We theoretically justify that the attack can indeed be successful without the knowledge of the true metric. We conclude by providing empirical results on a number of datasets, and clustering algorithms. To the best of our knowledge, this is the first work that generates spill-over adversarial samples without the knowledge of the true metric ensuring that the perturbed sample is not an outlier, and theoretically proves the above.