Abstract:The advancement of Large Language Models (LLMs) has significantly impacted various domains, including Web search, healthcare, and software development. However, as these models scale, they become more vulnerable to cybersecurity risks, particularly backdoor attacks. By exploiting the potent memorization capacity of LLMs, adversaries can easily inject backdoors into LLMs by manipulating a small portion of training data, leading to malicious behaviors in downstream applications whenever the hidden backdoor is activated by the pre-defined triggers. Moreover, emerging learning paradigms like instruction tuning and reinforcement learning from human feedback (RLHF) exacerbate these risks as they rely heavily on crowdsourced data and human feedback, which are not fully controlled. In this paper, we present a comprehensive survey of emerging backdoor threats to LLMs that appear during LLM development or inference, and cover recent advancement in both defense and detection strategies for mitigating backdoor threats to LLMs. We also outline key challenges in addressing these threats, highlighting areas for future research.
Abstract:The security of multi-turn conversational large language models (LLMs) is understudied despite it being one of the most popular LLM utilization. Specifically, LLMs are vulnerable to data poisoning backdoor attacks, where an adversary manipulates the training data to cause the model to output malicious responses to predefined triggers. Specific to the multi-turn dialogue setting, LLMs are at the risk of even more harmful and stealthy backdoor attacks where the backdoor triggers may span across multiple utterances, giving lee-way to context-driven attacks. In this paper, we explore a novel distributed backdoor trigger attack that serves to be an extra tool in an adversary's toolbox that can interface with other single-turn attack strategies in a plug and play manner. Results on two representative defense mechanisms indicate that distributed backdoor triggers are robust against existing defense strategies which are designed for single-turn user-model interactions, motivating us to propose a new defense strategy for the multi-turn dialogue setting that is more challenging. To this end, we also explore a novel contrastive decoding based defense that is able to mitigate the backdoor with a low computational tradeoff.