Abstract:In this report, we present the latest model of the Gemini family, Gemini 1.5 Pro, a highly compute-efficient multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. Gemini 1.5 Pro achieves near-perfect recall on long-context retrieval tasks across modalities, improves the state-of-the-art in long-document QA, long-video QA and long-context ASR, and matches or surpasses Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5 Pro's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 2.1 (200k) and GPT-4 Turbo (128k). Finally, we highlight surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.
Abstract:This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.
Abstract:Recent advances in Neural Architecture Search (NAS) have produced state-of-the-art architectures on several tasks. NAS shifts the efforts of human experts from developing novel architectures directly to designing architecture search spaces and methods to explore them efficiently. The search space definition captures prior knowledge about the properties of the architectures and it is crucial for the complexity and the performance of the search algorithm. However, different search space definitions require restarting the learning process from scratch. We propose a novel agent based on the Transformer that supports joint training and efficient transfer of prior knowledge between multiple search spaces and tasks.
Abstract:Neural Architecture Search has recently shown potential to automate the design of Neural Networks. The use of Neural Network agents trained with Reinforcement Learning can offer the possibility to learn complex patterns, as well as the ability to explore a vast and compositional search space. On the other hand, evolutionary algorithms offer the greediness and sample efficiency needed for such an application, as each sample requires a considerable amount of resources. We propose a class of Evolutionary-Neural hybrid agents (Evo-NAS), that retain the best qualities of the two approaches. We show that the Evo-NAS agent can outperform both Neural and Evolutionary agents, both on a synthetic task, and on architecture search for a suite of text classification datasets.