Abstract:Recommender systems (RS) are central to the filtering and curation of online content. These algorithms predict user ratings for unseen items based on past preferences. Despite their importance, the innate predictability of RS has received limited attention. This study introduces data-driven metrics to measure the predictability of RS based on the structural complexity of the user-item rating matrix. A low predictability score indicates complex and unpredictable user-item interactions, while a high predictability score reveals less complex patterns with predictive potential. We propose two strategies that use singular value decomposition (SVD) and matrix factorization (MF) to measure structural complexity. By perturbing the data and evaluating the prediction of the perturbed version, we explore the structural consistency indicated by the SVD singular vectors. The assumption is that a random perturbation of highly structured data does not change its structure. Empirical results show a high correlation between our metrics and the accuracy of the best-performing prediction algorithms on real data sets.
Abstract:We present a simple and quick method to approximate network centrality indexes. Our approach, called QuickCent, is inspired by so-called fast and frugal heuristics, which are heuristics initially proposed to model some human decision and inference processes. The centrality index that we estimate is the harmonic centrality, which is a measure based on shortest-path distances, so infeasible to compute on large networks. We compare QuickCent with known machine learning algorithms on synthetic data generated with preferential attachment, and some empirical networks. Our experiments show that QuickCent is able to make estimates that are competitive in accuracy with the best alternative methods tested, either on synthetic scale-free networks or empirical networks. QuickCent has the feature of achieving low error variance estimates, even with a small training set. Moreover, QuickCent is comparable in efficiency -- accuracy and time cost -- to those produced by more complex methods. We discuss and provide some insight into how QuickCent exploits the fact that in some networks, such as those generated by preferential attachment, local density measures such as the in-degree, can be a proxy for the size of the network region to which a node has access, opening up the possibility of approximating centrality indices based on size such as the harmonic centrality. Our initial results show that simple heuristics and biologically inspired computational methods are a promising line of research in the context of network measure estimations.
Abstract:The ability to accurately predict cyber-attacks would enable organizations to mitigate their growing threat and avert the financial losses and disruptions they cause. But how predictable are cyber-attacks? Researchers have attempted to combine external data -- ranging from vulnerability disclosures to discussions on Twitter and the darkweb -- with machine learning algorithms to learn indicators of impending cyber-attacks. However, successful cyber-attacks represent a tiny fraction of all attempted attacks: the vast majority are stopped, or filtered by the security appliances deployed at the target. As we show in this paper, the process of filtering reduces the predictability of cyber-attacks. The small number of attacks that do penetrate the target's defenses follow a different generative process compared to the whole data which is much harder to learn for predictive models. This could be caused by the fact that the resulting time series also depends on the filtering process in addition to all the different factors that the original time series depended on. We empirically quantify the loss of predictability due to filtering using real-world data from two organizations. Our work identifies the limits to forecasting cyber-attacks from highly filtered data.
Abstract:The ubiquity of mobile devices and wearable sensors offers unprecedented opportunities for continuous collection of multimodal physiological data. Such data enables temporal characterization of an individual's behaviors, which can provide unique insights into her physical and psychological health. Understanding the relation between different behaviors/activities and personality traits such as stress or work performance can help build strategies to improve the work environment. Especially in workplaces like hospitals where many employees are overworked, having such policies improves the quality of patient care by prioritizing mental and physical health of their caregivers. One challenge in analyzing physiological data is extracting the underlying behavioral states from the temporal sensor signals and interpreting them. Here, we use a non-parametric Bayesian approach, to model multivariate sensor data from multiple people and discover dynamic behaviors they share. We apply this method to data collected from sensors worn by a population of workers in a large urban hospital, capturing their physiological signals, such as breathing and heart rate, and activity patterns. We show that the learned states capture behavioral differences within the population that can help cluster participants into meaningful groups and better predict their cognitive and affective states. This method offers a practical way to learn compact behavioral representations from dynamic multivariate sensor signals and provide insights into the data.
Abstract:How is popularity gained online? Is being successful strictly related to rapidly becoming viral in an online platform or is it possible to acquire popularity in a steady and disciplined fashion? What are other temporal characteristics that can unveil the popularity of online content? To answer these questions, we leverage a multi-faceted temporal analysis of the evolution of popular online contents. Here, we present dipm-SC: a multi-dimensional shape-based time-series clustering algorithm with a heuristic to find the optimal number of clusters. First, we validate the accuracy of our algorithm on synthetic datasets generated from benchmark time series models. Second, we show that dipm-SC can uncover meaningful clusters of popularity behaviors in a real-world Twitter dataset. By clustering the multidimensional time-series of the popularity of contents coupled with other domain-specific dimensions, we uncover two main patterns of popularity: bursty and steady temporal behaviors. Moreover, we find that the way popularity is gained over time has no significant impact on the final cumulative popularity.
Abstract:The deep and darkweb (d2web) refers to limited access web sites that require registration, authentication, or more complex encryption protocols to access them. These web sites serve as hubs for a variety of illicit activities: to trade drugs, stolen user credentials, hacking tools, and to coordinate attacks and manipulation campaigns. Despite its importance to cyber crime, the d2web has not been systematically investigated. In this paper, we study a large corpus of messages posted to 80 d2web forums over a period of more than a year. We identify topics of discussion using LDA and use a non-parametric HMM to model the evolution of topics across forums. Then, we examine the dynamic patterns of discussion and identify forums with similar patterns. We show that our approach surfaces hidden similarities across different forums and can help identify anomalous events in this rich, heterogeneous data.