Abstract:How is popularity gained online? Is being successful strictly related to rapidly becoming viral in an online platform or is it possible to acquire popularity in a steady and disciplined fashion? What are other temporal characteristics that can unveil the popularity of online content? To answer these questions, we leverage a multi-faceted temporal analysis of the evolution of popular online contents. Here, we present dipm-SC: a multi-dimensional shape-based time-series clustering algorithm with a heuristic to find the optimal number of clusters. First, we validate the accuracy of our algorithm on synthetic datasets generated from benchmark time series models. Second, we show that dipm-SC can uncover meaningful clusters of popularity behaviors in a real-world Twitter dataset. By clustering the multidimensional time-series of the popularity of contents coupled with other domain-specific dimensions, we uncover two main patterns of popularity: bursty and steady temporal behaviors. Moreover, we find that the way popularity is gained over time has no significant impact on the final cumulative popularity.
Abstract:Multiplayer online battle arena has become a popular game genre. It also received increasing attention from our research community because they provide a wealth of information about human interactions and behaviors. A major problem is extracting meaningful patterns of activity from this type of data, in a way that is also easy to interpret. Here, we propose to exploit tensor decomposition techniques, and in particular Non-negative Tensor Factorization, to discover hidden correlated behavioral patterns of play in a popular game: League of Legends. We first collect the entire gaming history of a group of about one thousand players, totaling roughly $100K$ matches. By applying our methodological framework, we then separate players into groups that exhibit similar features and playing strategies, as well as similar temporal trajectories, i.e., behavioral progressions over the course of their gaming history: this will allow us to investigate how players learn and improve their skills.