Abstract:The accurate tracking of live cells using video microscopy recordings remains a challenging task for popular state-of-the-art image processing based object tracking methods. In recent years, several existing and new applications have attempted to integrate deep-learning based frameworks for this task, but most of them still heavily rely on consecutive frame based tracking embedded in their architecture or other premises that hinder generalized learning. To address this issue, we aimed to develop a new deep-learning based tracking method that relies solely on the assumption that cells can be tracked based on their spatio-temporal neighborhood, without restricting it to consecutive frames. The proposed method has the additional benefit that the motion patterns of the cells can be learned completely by the predictor without any prior assumptions, and it has the potential to handle a large number of video frames with heavy artifacts. The efficacy of the proposed method is demonstrated through multiple biologically motivated validation strategies and compared against several state-of-the-art cell tracking methods.
Abstract:Data augmentation is a commonly applied technique with two seemingly related advantages. With this method one can increase the size of the training set generating new samples and also increase the invariance of the network against the applied transformations. Unfortunately all images contain both relevant and irrelevant features for classification therefore this invariance has to be class specific. In this paper we will present a new method which uses saliency maps to restrict the invariance of neural networks to certain regions, providing higher test accuracy in classification tasks.
Abstract:The pooling operation is a cornerstone element of convolutional neural networks. These elements generate receptive fields for neurons, in which local perturbations should have minimal effect on the output activations, increasing robustness and invariance of the network. In this paper we will present an altered version of the most commonly applied method, maximum pooling, where pooling in theory is substituted by a continuous time differential equation, which generates a location sensitive pooling operation, more similar to biological receptive fields. We will present how this continuous method can be approximated numerically using discrete operations which fit ideally on a GPU. In our approach the kernel size is substituted by diffusion strength which is a continuous valued parameter, this way it can be optimized by gradient descent algorithms. We will evaluate the effect of continuous pooling on accuracy and computational need using commonly applied network architectures and datasets.
Abstract:We present generalized versions of the commonly used maximum pooling operation: $k$th maximum and sorted pooling operations which selects the $k$th largest response in each pooling region, selecting locally consistent features of the input images. This method is able to increase the generalization power of a network and can be used to decrease training time and error rate of networks and it can significantly improve accuracy in case of training scenarios where the amount of available data is limited, like one-shot learning scenarios
Abstract:Deep Neural Networks are robust to minor perturbations of the learned network parameters and their minor modifications do not change the overall network response significantly. This allows space for model stealing, where a malevolent attacker can steal an already trained network, modify the weights and claim the new network his own intellectual property. In certain cases this can prevent the free distribution and application of networks in the embedded domain. In this paper, we propose a method for creating an equivalent version of an already trained fully connected deep neural network that can prevent network stealing: namely, it produces the same responses and classification accuracy, but it is extremely sensitive to weight changes.
Abstract:Standard adversarial training involves two agents, namely a generator and a discriminator, playing a mini-max game. However, even if the players converge to an equilibrium, the generator may only recover a part of the target data distribution, in a situation commonly referred to as mode collapse. In this work, we present the Domain Partitioning Network (DoPaNet), a new approach to deal with mode collapse in generative adversarial learning. We employ multiple discriminators, each encouraging the generator to cover a different part of the target distribution. To ensure these parts do not overlap and collapse into the same mode, we add a classifier as a third agent in the game. The classifier decides which discriminator the generator is trained against for each sample. Through experiments on toy examples and real images, we show the merits of DoPaNet in covering the real distribution and its superiority with respect to the competing methods. Besides, we also show that we can control the modes from which samples are generated using DoPaNet.