Abstract:In the modern financial industry system, the structure of products has become more and more complex, and the bottleneck constraint of classical computing power has already restricted the development of the financial industry. Here, we present a photonic chip that implements the unary approach to European option pricing, in combination with the quantum amplitude estimation algorithm, to achieve a quadratic speedup compared to classical Monte Carlo methods. The circuit consists of three modules: a module loading the distribution of asset prices, a module computing the expected payoff, and a module performing the quantum amplitude estimation algorithm to introduce speed-ups. In the distribution module, a generative adversarial network is embedded for efficient learning and loading of asset distributions, which precisely capture the market trends. This work is a step forward in the development of specialized photonic processors for applications in finance, with the potential to improve the efficiency and quality of financial services.
Abstract:Machine learning methods have revolutionized the discovery process of new molecules and materials. However, the intensive training process of neural networks for molecules with ever increasing complexity has resulted in exponential growth in computation cost, leading to long simulation time and high energy consumption. Photonic chip technology offers an alternative platform for implementing neural network with faster data processing and lower energy usage compared to digital computers. Here, we demonstrate the capability of photonic neural networks in predicting the quantum mechanical properties of molecules. Additionally, we show that multiple properties can be learned simultaneously in a photonic chip via a multi-task regression learning algorithm, which we believe is the first of its kind, as most previous works focus on implementing a network for the task of classification. Photonics technology are also naturally capable of implementing complex-valued neural networks at no additional hardware cost and we show that such neural networks outperform conventional real-valued networks for molecular property prediction. Our work opens the avenue for harnessing photonic technology for large-scale machine learning applications in molecular sciences such as drug discovery and materials design.
Abstract:Context is essential for semantic segmentation. Due to the diverse shapes of objects and their complex layout in various scene images, the spatial scales and shapes of contexts for different objects have very large variation. It is thus ineffective or inefficient to aggregate various context information from a predefined fixed region. In this work, we propose to generate a scale- and shape-variant semantic mask for each pixel to confine its contextual region. To this end, we first propose a novel paired convolution to infer the semantic correlation of the pair and based on that to generate a shape mask. Using the inferred spatial scope of the contextual region, we propose a shape-variant convolution, of which the receptive field is controlled by the shape mask that varies with the appearance of input. In this way, the proposed network aggregates the context information of a pixel from its semantic-correlated region instead of a predefined fixed region. Furthermore, this work also proposes a labeling denoising model to reduce wrong predictions caused by the noisy low-level features. Without bells and whistles, the proposed segmentation network achieves new state-of-the-arts consistently on the six public segmentation datasets.
Abstract:In this work, we address the challenging issue of scene segmentation. To increase the feature similarity of the same object while keeping the feature discrimination of different objects, we explore to propagate information throughout the image under the control of objects' boundaries. To this end, we first propose to learn the boundary as an additional semantic class to enable the network to be aware of the boundary layout. Then, we propose unidirectional acyclic graphs (UAGs) to model the function of undirected cyclic graphs (UCGs), which structurize the image via building graphic pixel-by-pixel connections, in an efficient and effective way. Furthermore, we propose a boundary-aware feature propagation (BFP) module to harvest and propagate the local features within their regions isolated by the learned boundaries in the UAG-structured image. The proposed BFP is capable of splitting the feature propagation into a set of semantic groups via building strong connections among the same segment region but weak connections between different segment regions. Without bells and whistles, our approach achieves new state-of-the-art segmentation performance on three challenging semantic segmentation datasets, i.e., PASCAL-Context, CamVid, and Cityscapes.