Topic:Intrusion Detection
What is Intrusion Detection? Intrusion detection is the process of dynamically monitoring events occurring in a computer system or network, analyzing them for signs of possible incidents and often interdicting the unauthorized access. This is typically accomplished by automatically collecting information from a variety of systems and network sources, and then analyzing the information for possible security problems.
Papers and Code
Apr 22, 2025
Abstract:Edge computing-based Next-Generation Wireless Networks (NGWN)-IoT offer enhanced bandwidth capacity for large-scale service provisioning but remain vulnerable to evolving cyber threats. Existing intrusion detection and prevention methods provide limited security as adversaries continually adapt their attack strategies. We propose a dynamic attack detection and prevention approach to address this challenge. First, blockchain-based authentication uses the Deoxys Authentication Algorithm (DAA) to verify IoT device legitimacy before data transmission. Next, a bi-stage intrusion detection system is introduced: the first stage uses signature-based detection via an Improved Random Forest (IRF) algorithm. In contrast, the second stage applies feature-based anomaly detection using a Diffusion Convolution Recurrent Neural Network (DCRNN). To ensure Quality of Service (QoS) and maintain Service Level Agreements (SLA), trust-aware service migration is performed using Heap-Based Optimization (HBO). Additionally, on-demand virtual High-Interaction honeypots deceive attackers and extract attack patterns, which are securely stored using the Bimodal Lattice Signature Scheme (BLISS) to enhance signature-based Intrusion Detection Systems (IDS). The proposed framework is implemented in the NS3 simulation environment and evaluated against existing methods across multiple performance metrics, including accuracy, attack detection rate, false negative rate, precision, recall, ROC curve, memory usage, CPU usage, and execution time. Experimental results demonstrate that the framework significantly outperforms existing approaches, reinforcing the security of NGWN-enabled IoT ecosystems
* This paper has been submitted to the IEEE Transactions on Network
Science and Engineering (TNSE) for possible publication
Via

Apr 21, 2025
Abstract:The proliferation of Internet of Things (IoT) devices has expanded the attack surface, necessitating efficient intrusion detection systems (IDSs) for network protection. This paper presents FLARE, a feature-based lightweight aggregation for robust evaluation of IoT intrusion detection to address the challenges of securing IoT environments through feature aggregation techniques. FLARE utilizes a multilayered processing approach, incorporating session, flow, and time-based sliding-window data aggregation to analyze network behavior and capture vital features from IoT network traffic data. We perform extensive evaluations on IoT data generated from our laboratory experimental setup to assess the effectiveness of the proposed aggregation technique. To classify attacks in IoT IDS, we employ four supervised learning models and two deep learning models. We validate the performance of these models in terms of accuracy, precision, recall, and F1-score. Our results reveal that incorporating the FLARE aggregation technique as a foundational step in feature engineering, helps lay a structured representation, and enhances the performance of complex end-to-end models, making it a crucial step in IoT IDS pipeline. Our findings highlight the potential of FLARE as a valuable technique to improve performance and reduce computational costs of end-to-end IDS implementations, thereby fostering more robust IoT intrusion detection systems.
* 23 pages, 19 tables, 2 algorithms, 2 figures, submitted to
SecureComm25
Via

Apr 15, 2025
Abstract:We present a refined version of the Anomaly Awareness framework for enhancing unsupervised anomaly detection. Our approach introduces minimal supervision into Variational Autoencoders (VAEs) through a two-stage training strategy: the model is first trained in an unsupervised manner on background data, and then fine-tuned using a small sample of labeled anomalies to encourage larger reconstruction errors for anomalous samples. We validate the method across diverse domains, including the MNIST dataset with synthetic anomalies, network intrusion data from the CICIDS benchmark, collider physics data from the LHCO2020 dataset, and simulated events from the Standard Model Effective Field Theory (SMEFT). The latter provides a realistic example of subtle kinematic deviations in Higgs boson production. In all cases, the model demonstrates improved sensitivity to unseen anomalies, achieving better separation between normal and anomalous samples. These results indicate that even limited anomaly information, when incorporated through targeted fine-tuning, can substantially improve the generalization and performance of unsupervised models for anomaly detection.
* 16 pages, 5 figures
Via

Apr 10, 2025
Abstract:Detecting Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks remains a critical challenge in cybersecurity. This research introduces a hybrid deep learning model combining Gated Recurrent Units (GRUs) and a Neural Turing Machine (NTM) for enhanced intrusion detection. Trained on the UNSW-NB15 and BoT-IoT datasets, the model employs GRU layers for sequential data processing and an NTM for long-term pattern recognition. The proposed approach achieves 99% accuracy in distinguishing between normal, DoS, and DDoS traffic. These findings offer promising advancements in real-time threat detection and contribute to improved network security across various domains.
* Accepted at the 2024 5th International Conference on Smart
Electronics and Communication (ICOSEC). This is the accepted manuscript
version. The final version is published by IEEE at
https://doi.org/10.1109/ICOSEC61587.2024.10722438
Via

Apr 11, 2025
Abstract:Mild Cognitive Impairment (MCI) affects 12-18% of individuals over 60. MCI patients exhibit cognitive dysfunctions without significant daily functional loss. While MCI may progress to dementia, predicting this transition remains a clinical challenge due to limited and unreliable indicators. Behavioral changes, like in the execution of Activities of Daily Living (ADLs), can signal such progression. Sensorized smart homes and wearable devices offer an innovative solution for continuous, non-intrusive monitoring ADLs for MCI patients. However, current machine learning models for detecting behavioral changes lack transparency, hindering clinicians' trust. This paper introduces the SERENADE project, a European Union-funded initiative that aims to detect and explain behavioral changes associated with cognitive decline using explainable AI methods. SERENADE aims at collecting one year of data from 30 MCI patients living alone, leveraging AI to support clinical decision-making and offering a new approach to early dementia detection.
Via

Apr 08, 2025
Abstract:Cyberattacks on critical infrastructure, particularly water distribution systems, have increased due to rapid digitalization and the integration of IoT devices and industrial control systems (ICS). These cyber-physical systems (CPS) introduce new vulnerabilities, requiring robust and automated intrusion detection systems (IDS) to mitigate potential threats. This study addresses key challenges in anomaly detection by leveraging time correlations in sensor data, integrating physical principles into machine learning models, and optimizing computational efficiency for edge applications. We build upon the concept of temporal differential consistency (TDC) loss to capture the dynamics of the system, ensuring meaningful relationships between dynamic states. Expanding on this foundation, we propose a hybrid autoencoder-based approach, referred to as hybrid TDC-AE, which extends TDC by incorporating both deterministic nodes and conventional statistical nodes. This hybrid structure enables the model to account for non-deterministic processes. Our approach achieves state-of-the-art classification performance while improving time to detect anomalies by 3%, outperforming the BATADAL challenge leader without requiring domain-specific knowledge, making it broadly applicable. Additionally, it maintains the computational efficiency of conventional autoencoders while reducing the number of fully connected layers, resulting in a more sustainable and efficient solution. The method demonstrates how leveraging physics-inspired consistency principles enhances anomaly detection and strengthens the resilience of cyber-physical systems.
Via

Apr 06, 2025
Abstract:In the era of data expansion, ensuring data privacy has become increasingly critical, posing significant challenges to traditional AI-based applications. In addition, the increasing adoption of IoT devices has introduced significant cybersecurity challenges, making traditional Network Intrusion Detection Systems (NIDS) less effective against evolving threats, and privacy concerns and regulatory restrictions limit their deployment. Federated Learning (FL) has emerged as a promising solution, allowing decentralized model training while maintaining data privacy to solve these issues. However, despite implementing privacy-preserving technologies, FL systems remain vulnerable to adversarial attacks. Furthermore, data distribution among clients is not heterogeneous in the FL scenario. We propose WeiDetect, a two-phase, server-side defense mechanism for FL-based NIDS that detects malicious participants to address these challenges. In the first phase, local models are evaluated using a validation dataset to generate validation scores. These scores are then analyzed using a Weibull distribution, identifying and removing malicious models. We conducted experiments to evaluate the effectiveness of our approach in diverse attack settings. Our evaluation included two popular datasets, CIC-Darknet2020 and CSE-CIC-IDS2018, tested under non-IID data distributions. Our findings highlight that WeiDetect outperforms state-of-the-art defense approaches, improving higher target class recall up to 70% and enhancing the global model's F1 score by 1% to 14%.
Via

Apr 03, 2025
Abstract:The Internet of Vehicles (IoV) may face challenging cybersecurity attacks that may require sophisticated intrusion detection systems, necessitating a rapid development and response system. This research investigates the performance advantages of GPU-accelerated libraries (cuML) compared to traditional CPU-based implementations (scikit-learn), focusing on the speed and efficiency required for machine learning models used in IoV threat detection environments. The comprehensive evaluations conducted employ four machine learning approaches (Random Forest, KNN, Logistic Regression, XGBoost) across three distinct IoV security datasets (OTIDS, GIDS, CICIoV2024). Our findings demonstrate that GPU-accelerated implementations dramatically improved computational efficiency, with training times reduced by a factor of up to 159 and prediction speeds accelerated by up to 95 times compared to traditional CPU processing, all while preserving detection accuracy. This remarkable performance breakthrough empowers researchers and security specialists to harness GPU acceleration for creating faster, more effective threat detection systems that meet the urgent real-time security demands of today's connected vehicle networks.
* CIIT 2025 22nd International Conference on Informatics and
Information Technologies (CIIT)
Via

Apr 01, 2025
Abstract:The Open Radio Access Network (O-RAN) architecture is reshaping telecommunications by promoting openness, flexibility, and intelligent closed-loop optimization. By decoupling hardware and software and enabling multi-vendor deployments, O-RAN reduces costs, enhances performance, and allows rapid adaptation to new technologies. A key innovation is intelligent network slicing, which partitions networks into isolated slices tailored for specific use cases or quality of service requirements. The RAN Intelligent Controller further optimizes resource allocation, ensuring efficient utilization and improved service quality for user equipment (UEs). However, the modular and dynamic nature of O-RAN expands the threat surface, necessitating advanced security measures to maintain network integrity, confidentiality, and availability. Intrusion detection systems have become essential for identifying and mitigating attacks. This research explores using large language models (LLMs) to generate security recommendations based on the temporal traffic patterns of connected UEs. The paper introduces an LLM-driven intrusion detection framework and demonstrates its efficacy through experimental deployments, comparing non fine-tuned and fine-tuned models for task-specific accuracy.
* This article has been accepted for publication in the IEEE 2025
International Conference on Communications (ICC2025)
Via

Apr 02, 2025
Abstract:The use of DNS over HTTPS (DoH) tunneling by an attacker to hide malicious activity within encrypted DNS traffic poses a serious threat to network security, as it allows malicious actors to bypass traditional monitoring and intrusion detection systems while evading detection by conventional traffic analysis techniques. Machine Learning (ML) techniques can be used to detect DoH tunnels; however, their effectiveness relies on large datasets containing both benign and malicious traffic. Sharing such datasets across entities is challenging due to privacy concerns. In this work, we propose CO-DEFEND (Continuous Decentralized Federated Learning for Secure DoH-Based Threat Detection), a Decentralized Federated Learning (DFL) framework that enables multiple entities to collaboratively train a classification machine learning model while preserving data privacy and enhancing resilience against single points of failure. The proposed DFL framework, which is scalable and privacy-preserving, is based on a federation process that allows multiple entities to train online their local models using incoming DoH flows in real time as they are processed by the entity. In addition, we adapt four classical machine learning algorithms, Support Vector Machines (SVM), Logistic Regression (LR), Decision Trees (DT), and Random Forest (RF), for federated scenarios, comparing their results with more computationally complex alternatives such as neural networks. We compare our proposed method by using the dataset CIRA-CIC-DoHBrw-2020 with existing machine learning approaches to demonstrate its effectiveness in detecting malicious DoH tunnels and the benefits it brings.
* 15 pages, 8 figures, 4 tables
Via
