Abstract:The use of DNS over HTTPS (DoH) tunneling by an attacker to hide malicious activity within encrypted DNS traffic poses a serious threat to network security, as it allows malicious actors to bypass traditional monitoring and intrusion detection systems while evading detection by conventional traffic analysis techniques. Machine Learning (ML) techniques can be used to detect DoH tunnels; however, their effectiveness relies on large datasets containing both benign and malicious traffic. Sharing such datasets across entities is challenging due to privacy concerns. In this work, we propose CO-DEFEND (Continuous Decentralized Federated Learning for Secure DoH-Based Threat Detection), a Decentralized Federated Learning (DFL) framework that enables multiple entities to collaboratively train a classification machine learning model while preserving data privacy and enhancing resilience against single points of failure. The proposed DFL framework, which is scalable and privacy-preserving, is based on a federation process that allows multiple entities to train online their local models using incoming DoH flows in real time as they are processed by the entity. In addition, we adapt four classical machine learning algorithms, Support Vector Machines (SVM), Logistic Regression (LR), Decision Trees (DT), and Random Forest (RF), for federated scenarios, comparing their results with more computationally complex alternatives such as neural networks. We compare our proposed method by using the dataset CIRA-CIC-DoHBrw-2020 with existing machine learning approaches to demonstrate its effectiveness in detecting malicious DoH tunnels and the benefits it brings.
Abstract:Federated Learning (FL) emerges as a distributed machine learning approach that addresses privacy concerns by training AI models locally on devices. Decentralized Federated Learning (DFL) extends the FL paradigm by eliminating the central server, thereby enhancing scalability and robustness through the avoidance of a single point of failure. However, DFL faces significant challenges in optimizing security, as most Byzantine-robust algorithms proposed in the literature are designed for centralized scenarios. In this paper, we present a novel Byzantine-robust aggregation algorithm to enhance the security of Decentralized Federated Learning environments, coined WFAgg. This proposal handles the adverse conditions and strength robustness of dynamic decentralized topologies at the same time by employing multiple filters to identify and mitigate Byzantine attacks. Experimental results demonstrate the effectiveness of the proposed algorithm in maintaining model accuracy and convergence in the presence of various Byzantine attack scenarios, outperforming state-of-the-art centralized Byzantine-robust aggregation schemes (such as Multi-Krum or Clustering). These algorithms are evaluated on an IID image classification problem in both centralized and decentralized scenarios.