Abstract:In prototype-based federated learning, the exchange of model parameters between clients and the master server is replaced by transmission of prototypes or quantized versions of the data samples to the aggregation server. A fully decentralized deployment of prototype-based learning, without a central agregartor of prototypes, is more robust upon network failures and reacts faster to changes in the statistical distribution of the data, suggesting potential advantages and quick adaptation in dynamic learning tasks, e.g., when the data sources are IoT devices or when data is non-iid. In this paper, we consider the problem of designing a communication-efficient decentralized learning system based on prototypes. We address the challenge of prototype redundancy by leveraging on a twofold data compression technique, i.e., sending only update messages if the prototypes are informationtheoretically useful (via the Jensen-Shannon distance), and using clustering on the prototypes to compress the update messages used in the gossip protocol. We also use parallel instead of sequential gossiping, and present an analysis of its age-of-information (AoI). Our experimental results show that, with these improvements, the communications load can be substantially reduced without decreasing the convergence rate of the learning algorithm.
Abstract:Federated Learning (FL) emerges as a distributed machine learning approach that addresses privacy concerns by training AI models locally on devices. Decentralized Federated Learning (DFL) extends the FL paradigm by eliminating the central server, thereby enhancing scalability and robustness through the avoidance of a single point of failure. However, DFL faces significant challenges in optimizing security, as most Byzantine-robust algorithms proposed in the literature are designed for centralized scenarios. In this paper, we present a novel Byzantine-robust aggregation algorithm to enhance the security of Decentralized Federated Learning environments, coined WFAgg. This proposal handles the adverse conditions and strength robustness of dynamic decentralized topologies at the same time by employing multiple filters to identify and mitigate Byzantine attacks. Experimental results demonstrate the effectiveness of the proposed algorithm in maintaining model accuracy and convergence in the presence of various Byzantine attack scenarios, outperforming state-of-the-art centralized Byzantine-robust aggregation schemes (such as Multi-Krum or Clustering). These algorithms are evaluated on an IID image classification problem in both centralized and decentralized scenarios.
Abstract:Decentralised machine learning has recently been proposed as a potential solution to the security issues of the canonical federated learning approach. In this paper, we propose a decentralised and collaborative machine learning framework specially oriented to resource-constrained devices, usual in IoT deployments. With this aim we propose the following construction blocks. First, an incremental learning algorithm based on prototypes that was specifically implemented to work in low-performance computing elements. Second, two random-based protocols to exchange the local models among the computing elements in the network. Finally, two algorithmics approaches for prediction and prototype creation. This proposal was compared to a typical centralized incremental learning approach in terms of accuracy, training time and robustness with very promising results.
Abstract:Food retailing is now on an accelerated path to a success penetration into the digital market by new ways of value creation at all stages of the consumer decision process. One of the most important imperatives in this path is the availability of quality data to feed all the process in digital transformation. But the quality of data is not so obvious if we consider the variety of products and suppliers in the grocery market. Within this context of digital transformation of grocery industry, \textit{Midiadia} is Spanish data provider company that works on converting data from the retailers' products into knowledge with attributes and insights from the product labels, that is, maintaining quality data in a dynamic market with a high dispersion of products. Currently, they manually categorize products (groceries) according to the information extracted directly (text processing) from the product labelling and packaging. This paper introduces a solution to automatically categorize the constantly changing product catalogue into a 3-level food taxonomy. Our proposal studies three different approaches: a score-based ranking method, traditional machine learning algorithms, and deep neural networks. Thus, we provide four different classifiers that support a more efficient and less error-prone maintenance of groceries catalogues, the main asset of the company. Finally, we have compared the performance of these three alternatives, concluding that traditional machine learning algorithms perform better, but closely followed by the score-based approach.
Abstract:With the exponential increase in information, it has become imperative to design mechanisms that allow users to access what matters to them as quickly as possible. The recommendation system ($RS$) with information technology development is the solution, it is an intelligent system. Various types of data can be collected on items of interest to users and presented as recommendations. $RS$ also play a very important role in e-commerce. The purpose of recommending a product is to designate the most appropriate designation for a specific product. The major challenges when recommending products are insufficient information about the products and the categories to which they belong. In this paper, we transform the product data using two methods of document representation: bag-of-words (BOW) and the neural network-based document combination known as vector-based (Doc2Vec). We propose three-criteria recommendation systems (product, package, and health) for each document representation method to foster online grocery, which depends on product characteristics such as (composition, packaging, nutrition table, allergen, etc.). For our evaluation, we conducted a user and expert survey. Finally, we have compared the performance of these three criteria for each document representation method, discovering that the neural network-based (Doc2Vec) performs better and completely alters the results.
Abstract:Performance analysis is an essential task in High-Performance Computing (HPC) systems and it is applied for different purposes such as anomaly detection, optimal resource allocation, and budget planning. HPC monitoring tasks generate a huge number of Key Performance Indicators (KPIs) to supervise the status of the jobs running in these systems. KPIs give data about CPU usage, memory usage, network (interface) traffic, or other sensors that monitor the hardware. Analyzing this data, it is possible to obtain insightful information about running jobs, such as their characteristics, performance, and failures. The main contribution in this paper is to identify which metric/s (KPIs) is/are the most appropriate to identify/classify different types of jobs according to their behavior in the HPC system. With this aim, we have applied different clustering techniques (partition and hierarchical clustering algorithms) using a real dataset from the Galician Computation Center (CESGA). We have concluded that (i) those metrics (KPIs) related to the Network (interface) traffic monitoring provide the best cohesion and separation to cluster HPC jobs, and (ii) hierarchical clustering algorithms are the most suitable for this task. Our approach was validated using a different real dataset from the same HPC center.
Abstract:High-Performance Computing (HPC) systems need to be constantly monitored to ensure their stability. The monitoring systems collect a tremendous amount of data about different parameters or Key Performance Indicators (KPIs), such as resource usage, IO waiting time, etc. A proper analysis of this data, usually stored as time series, can provide insight in choosing the right management strategies as well as the early detection of issues. In this paper, we introduce a methodology to cluster HPC jobs according to their KPI indicators. Our approach reduces the inherent high dimensionality of the collected data by applying two techniques to the time series: literature-based and variance-based feature extraction. We also define a procedure to visualize the obtained clusters by combining the two previous approaches and the Principal Component Analysis (PCA). Finally, we have validated our contributions on a real data set to conclude that those KPIs related to CPU usage provide the best cohesion and separation for clustering analysis and the good results of our visualization methodology.
Abstract:Nowadays, the ubiquitous usage of mobile devices and networks have raised concerns about the loss of control over personal data and research advance towards the trade-off between privacy and utility in scenarios that combine exchange communications, big databases and distributed and collaborative (P2P) Machine Learning techniques. On the other hand, although Federated Learning (FL) provides some level of privacy by retaining the data at the local node, which executes a local training to enrich a global model, this scenario is still susceptible to privacy breaches as membership inference attacks. To provide a stronger level of privacy, this research deploys an experimental environment for FL with Differential Privacy (DP) using benchmark datasets. The obtained results show that the election of parameters and techniques of DP is central in the aforementioned trade-off between privacy and utility by means of a classification example.
Abstract:Federated learning (FL) is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. One central server is not enough, due to problems of connectivity with clients. In this paper, a decentralized federated learning (DFL) model with the stochastic gradient descent (SGD) algorithm has been introduced, as a more scalable approach to improve the learning performance in a network of agents with arbitrary topology. Three scheduling policies for DFL have been proposed for communications between the clients and the parallel servers, and the convergence, accuracy, and loss have been tested in a totally decentralized mplementation of SGD. The experimental results show that the proposed scheduling polices have an impact both on the speed of convergence and in the final global model.
Abstract:The rapid growth of Internet of Things (IoT) devices and applications has led to an increased demand for advanced analytics and machine learning techniques capable of handling the challenges associated with data privacy, security, and scalability. Federated learning (FL) and blockchain technologies have emerged as promising approaches to address these challenges by enabling decentralized, secure, and privacy-preserving model training on distributed data sources. In this paper, we present a novel IoT solution that combines the incremental learning vector quantization algorithm (XuILVQ) with Ethereum blockchain technology to facilitate secure and efficient data sharing, model training, and prototype storage in a distributed environment. Our proposed architecture addresses the shortcomings of existing blockchain-based FL solutions by reducing computational and communication overheads while maintaining data privacy and security. We assess the performance of our system through a series of experiments, showcasing its potential to enhance the accuracy and efficiency of machine learning tasks in IoT settings.