Abstract:In prototype-based federated learning, the exchange of model parameters between clients and the master server is replaced by transmission of prototypes or quantized versions of the data samples to the aggregation server. A fully decentralized deployment of prototype-based learning, without a central agregartor of prototypes, is more robust upon network failures and reacts faster to changes in the statistical distribution of the data, suggesting potential advantages and quick adaptation in dynamic learning tasks, e.g., when the data sources are IoT devices or when data is non-iid. In this paper, we consider the problem of designing a communication-efficient decentralized learning system based on prototypes. We address the challenge of prototype redundancy by leveraging on a twofold data compression technique, i.e., sending only update messages if the prototypes are informationtheoretically useful (via the Jensen-Shannon distance), and using clustering on the prototypes to compress the update messages used in the gossip protocol. We also use parallel instead of sequential gossiping, and present an analysis of its age-of-information (AoI). Our experimental results show that, with these improvements, the communications load can be substantially reduced without decreasing the convergence rate of the learning algorithm.
Abstract:Decentralised machine learning has recently been proposed as a potential solution to the security issues of the canonical federated learning approach. In this paper, we propose a decentralised and collaborative machine learning framework specially oriented to resource-constrained devices, usual in IoT deployments. With this aim we propose the following construction blocks. First, an incremental learning algorithm based on prototypes that was specifically implemented to work in low-performance computing elements. Second, two random-based protocols to exchange the local models among the computing elements in the network. Finally, two algorithmics approaches for prediction and prototype creation. This proposal was compared to a typical centralized incremental learning approach in terms of accuracy, training time and robustness with very promising results.