Abstract:Cloud computing environments demand dynamic and efficient resource management to ensure optimal performance, reduced energy consumption, and adherence to Service Level Agreements (SLAs). This paper presents a Genetic Algorithm (GA)-based approach for Virtual Machine (VM) placement and consolidation, aiming to minimize power usage while maintaining QoS constraints. The proposed method dynamically adjusts VM allocation based on real-time workload variations, outperforming traditional heuristics such as First Fit Decreasing (FFD) and Best Fit Decreasing (BFD). Experimental results show notable reductions in energy consumption, VM migrations, SLA violation rates, and execution time. A correlation heatmap further illustrates strong relationships among these key performance indicators, confirming the effectiveness of our approach in optimizing cloud resource utilization.
Abstract:Detecting Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks remains a critical challenge in cybersecurity. This research introduces a hybrid deep learning model combining Gated Recurrent Units (GRUs) and a Neural Turing Machine (NTM) for enhanced intrusion detection. Trained on the UNSW-NB15 and BoT-IoT datasets, the model employs GRU layers for sequential data processing and an NTM for long-term pattern recognition. The proposed approach achieves 99% accuracy in distinguishing between normal, DoS, and DDoS traffic. These findings offer promising advancements in real-time threat detection and contribute to improved network security across various domains.