Abstract:We evaluate the ability of Large Language Models (LLMs) to discern and express their internal knowledge state, a key factor in countering factual hallucination and ensuring reliable application of LLMs. We observe a robust self-awareness of internal knowledge state in LLMs, evidenced by over 85% accuracy in knowledge probing. However, LLMs often fail to express their internal knowledge during generation, leading to factual hallucinations. We develop an automated hallucination annotation tool, Dreamcatcher, which merges knowledge probing and consistency checking methods to rank factual preference data. Using knowledge preference as reward, We propose a Reinforcement Learning from Knowledge Feedback (RLKF) training framework, leveraging reinforcement learning to enhance the factuality and honesty of LLMs. Our experiments across multiple models show that RLKF training effectively enhances the ability of models to utilize their internal knowledge state, boosting performance in a variety of knowledge-based and honesty-related tasks.
Abstract:While large language models (LLMs) are equipped with longer text input capabilities than before, they are struggling to seek correct information in long contexts. The "lost in the middle" problem challenges most LLMs, referring to the dramatic decline in accuracy when correct information is located in the middle. To overcome this crucial issue, this paper proposes to enhance the information searching and reflection ability of LLMs in long contexts via specially designed tasks called Attention Strengthening Multi-doc QA (ASM QA). Following these tasks, our model excels in focusing more precisely on the desired information. Experimental results show substantial improvement in Multi-doc QA and other benchmarks, superior to state-of-the-art models by 13.7% absolute gain in shuffled settings, by 21.5% in passage retrieval task. We release our model, Ziya-Reader to promote related research in the community.