Abstract:Multi-Label Text Classification (MLTC) is a practical yet challenging task that involves assigning multiple non-exclusive labels to each document. Previous studies primarily focus on capturing label correlations to assist label prediction by introducing special labeling schemes, designing specific model structures, or adding auxiliary tasks. Recently, the $k$ Nearest Neighbor ($k$NN) framework has shown promise by retrieving labeled samples as references to mine label co-occurrence information in the embedding space. However, two critical biases, namely embedding alignment bias and confidence estimation bias, are often overlooked, adversely affecting prediction performance. In this paper, we introduce a DEbiased Nearest Neighbors (DENN) framework for MLTC, specifically designed to mitigate these biases. To address embedding alignment bias, we propose a debiased contrastive learning strategy, enhancing neighbor consistency on label co-occurrence. For confidence estimation bias, we present a debiased confidence estimation strategy, improving the adaptive combination of predictions from $k$NN and inductive binary classifications. Extensive experiments conducted on four public benchmark datasets (i.e., AAPD, RCV1-V2, Amazon-531, and EUR-LEX57K) showcase the effectiveness of our proposed method. Besides, our method does not introduce any extra parameters.
Abstract:Recent Pre-trained Language Models (PLMs) usually only provide users with the inference APIs, namely the emerging Model-as-a-Service (MaaS) setting. To adapt MaaS PLMs to downstream tasks without accessing their parameters and gradients, some existing methods focus on the output-side adaptation of PLMs, viewing the PLM as an encoder and then optimizing a task-specific decoder for decoding the output hidden states and class scores of the PLM. Despite the effectiveness of these methods, they only use a single prompt to query PLMs for decoding, leading to a heavy reliance on the quality of the adopted prompt. In this paper, we propose a simple yet effective Multi-Prompting Decoder (MPD) framework for MaaS adaptation. The core idea is to query PLMs with multiple different prompts for each sample, thereby obtaining multiple output hidden states and class scores for subsequent decoding. Such multi-prompting decoding paradigm can simultaneously mitigate reliance on the quality of a single prompt, alleviate the issue of data scarcity under the few-shot setting, and provide richer knowledge extracted from PLMs. Specifically, we propose two decoding strategies: multi-prompting decoding with optimal transport for hidden states and calibrated decoding for class scores. Extensive experiments demonstrate that our method achieves new state-of-the-art results on multiple natural language understanding datasets under the few-shot setting.