Abstract:In real-world advertising systems, conversions have different types in nature and ads can be shown in different display scenarios, both of which highly impact the actual conversion rate (CVR). This results in the multi-type and multi-scenario CVR prediction problem. A desired model for this problem should satisfy the following requirements: 1) Accuracy: the model should achieve fine-grained accuracy with respect to any conversion type in any display scenario. 2) Scalability: the model parameter size should be affordable. 3) Convenience: the model should not require a large amount of effort in data partitioning, subset processing and separate storage. Existing approaches cannot simultaneously satisfy these requirements. For example, building a separate model for each (conversion type, display scenario) pair is neither scalable nor convenient. Building a unified model trained on all the data with conversion type and display scenario included as two features is not accurate enough. In this paper, we propose the Masked Multi-domain Network (MMN) to solve this problem. To achieve the accuracy requirement, we model domain-specific parameters and propose a dynamically weighted loss to account for the loss scale imbalance issue within each mini-batch. To achieve the scalability requirement, we propose a parameter sharing and composition strategy to reduce model parameters from a product space to a sum space. To achieve the convenience requirement, we propose an auto-masking strategy which can take mixed data from all the domains as input. It avoids the overhead caused by data partitioning, individual processing and separate storage. Both offline and online experimental results validate the superiority of MMN for multi-type and multi-scenario CVR prediction. MMN is now the serving model for real-time CVR prediction in UC Toutiao.
Abstract:This paper investigates a wireless-powered Internet of Things (IoT) network comprising a hybrid access point (HAP) and two devices. The HAP facilitates downlink wireless energy transfer (WET) for device charging and uplink wireless information transfer (WIT) to collect status updates from the devices. To keep the information fresh, concurrent WET and WIT are allowed, and orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) are adaptively scheduled for WIT. Consequently, we formulate an expected weighted sum age of information (EWSAoI) minimization problem to adaptively schedule the transmission scheme, choosing from WET, OMA, NOMA, and WET+OMA, and to allocate transmit power. To address this, we reformulate the problem as a Markov decision process (MDP) and develop an optimal policy based on instantaneous AoI and remaining battery power to determine scheme selection and transmit power allocation. Extensive results demonstrate the effectiveness of the proposed policy, and the optimal policy has a distinct decision boundary-switching property, providing valuable insights for practical system design.
Abstract:Smart intersections have the potential to improve road safety with sensing, communication, and edge computing technologies. Perception sensors installed at a smart intersection can monitor the traffic environment in real time and send infrastructure-based warnings to nearby travelers through V2X communication. This paper investigated how infrastructure-based warnings can influence driving behaviors and improve roundabout safety through a driving-simulator study - a challenging driving scenario for human drivers. A co-simulation platform integrating Simulation of Urban Mobility (SUMO) and Webots was developed to serve as the driving simulator. A real-world roundabout in Ann Arbor, Michigan was built in the co-simulation platform as the study area, and the merging scenarios were investigated. 36 participants were recruited and asked to navigate the roundabout under three danger levels (e.g., low, medium, high) and three collision warning designs (e.g., no warning, warning issued 1 second in advance, warning issued 2 seconds in advance). Results indicated that advanced warnings can significantly enhance safety by minimizing potential risks compared to scenarios without warnings. Earlier warnings enabled smoother driver responses and reduced abrupt decelerations. In addition, a personalized intention prediction model was developed to predict drivers' stop-or-go decisions when the warning is displayed. Among all tested machine learning models, the XGBoost model achieved the highest prediction accuracy with a precision rate of 95.56% and a recall rate of 97.73%.