Abstract:This paper investigates a wireless-powered Internet of Things (IoT) network comprising a hybrid access point (HAP) and two devices. The HAP facilitates downlink wireless energy transfer (WET) for device charging and uplink wireless information transfer (WIT) to collect status updates from the devices. To keep the information fresh, concurrent WET and WIT are allowed, and orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) are adaptively scheduled for WIT. Consequently, we formulate an expected weighted sum age of information (EWSAoI) minimization problem to adaptively schedule the transmission scheme, choosing from WET, OMA, NOMA, and WET+OMA, and to allocate transmit power. To address this, we reformulate the problem as a Markov decision process (MDP) and develop an optimal policy based on instantaneous AoI and remaining battery power to determine scheme selection and transmit power allocation. Extensive results demonstrate the effectiveness of the proposed policy, and the optimal policy has a distinct decision boundary-switching property, providing valuable insights for practical system design.