Abstract:Recent advancements in large language models (LLMs) have revolutionized various domains, bringing significant progress and new opportunities. Despite progress in speech-related tasks, LLMs have not been sufficiently explored in multi-talker scenarios. In this work, we present a pioneering effort to investigate the capability of LLMs in transcribing speech in multi-talker environments, following versatile instructions related to multi-talker automatic speech recognition (ASR), target talker ASR, and ASR based on specific talker attributes such as sex, occurrence order, language, and keyword spoken. Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context. These representations are then fed into an LLM fine-tuned using LoRA, enabling the capabilities for speech comprehension and transcription. Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios, highlighting the potential of LLM to handle speech-related tasks based on user instructions in such complex settings.
Abstract:Functional magnetic resonance imaging (fMRI) is essential for developing encoding models that identify functional changes in language-related brain areas of individuals with Neurocognitive Disorders (NCD). While large language model (LLM)-based fMRI encoding has shown promise, existing studies predominantly focus on healthy, young adults, overlooking older NCD populations and cognitive level correlations. This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores, addressing current limitations. We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels. Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus. This study highlights the potential of fMRI encoding models and brain scores for detecting early functional changes in NCD patients.
Abstract:Multi-talker speech recognition and target-talker speech recognition, both involve transcription in multi-talker contexts, remain significant challenges. However, existing methods rarely attempt to simultaneously address both tasks. In this study, we propose a pioneering approach to empower Whisper, which is a speech foundation model, to tackle joint multi-talker and target-talker speech recognition tasks. Specifically, (i) we freeze Whisper and plug a Sidecar separator into its encoder to separate mixed embedding for multiple talkers; (ii) a Target Talker Identifier is introduced to identify the embedding flow of the target talker on the fly, requiring only three-second enrollment speech as a cue; (iii) soft prompt tuning for decoder is explored for better task adaptation. Our method outperforms previous methods on two- and three-talker LibriMix and LibriSpeechMix datasets for both tasks, and delivers acceptable zero-shot performance on multi-talker ASR on AishellMix Mandarin dataset.
Abstract:Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech by improving the intelligibility and naturalness. This is a challenging task especially for patients with severe dysarthria and speaking in complex, noisy acoustic environments. To address these challenges, we propose a novel multi-modal framework to utilize visual information, e.g., lip movements, in DSR as extra clues for reconstructing the highly abnormal pronunciations. The multi-modal framework consists of: (i) a multi-modal encoder to extract robust phoneme embeddings from dysarthric speech with auxiliary visual features; (ii) a variance adaptor to infer the normal phoneme duration and pitch contour from the extracted phoneme embeddings; (iii) a speaker encoder to encode the speaker's voice characteristics; and (iv) a mel-decoder to generate the reconstructed mel-spectrogram based on the extracted phoneme embeddings, prosodic features and speaker embeddings. Both objective and subjective evaluations conducted on the commonly used UASpeech corpus show that our proposed approach can achieve significant improvements over baseline systems in terms of speech intelligibility and naturalness, especially for the speakers with more severe symptoms. Compared with original dysarthric speech, the reconstructed speech achieves 42.1\% absolute word error rate reduction for patients with more severe dysarthria levels.
Abstract:Dysarthric speech reconstruction (DSR) systems aim to automatically convert dysarthric speech into normal-sounding speech. The technology eases communication with speakers affected by the neuromotor disorder and enhances their social inclusion. NED-based (Neural Encoder-Decoder) systems have significantly improved the intelligibility of the reconstructed speech as compared with GAN-based (Generative Adversarial Network) approaches, but the approach is still limited by training inefficiency caused by the cascaded pipeline and auxiliary tasks of the content encoder, which may in turn affect the quality of reconstruction. Inspired by self-supervised speech representation learning and discrete speech units, we propose a Unit-DSR system, which harnesses the powerful domain-adaptation capacity of HuBERT for training efficiency improvement and utilizes speech units to constrain the dysarthric content restoration in a discrete linguistic space. Compared with NED approaches, the Unit-DSR system only consists of a speech unit normalizer and a Unit HiFi-GAN vocoder, which is considerably simpler without cascaded sub-modules or auxiliary tasks. Results on the UASpeech corpus indicate that Unit-DSR outperforms competitive baselines in terms of content restoration, reaching a 28.2% relative average word error rate reduction when compared to original dysarthric speech, and shows robustness against speed perturbation and noise.
Abstract:Although automatic speech recognition (ASR) can perform well in common non-overlapping environments, sustaining performance in multi-talker overlapping speech recognition remains challenging. Recent research revealed that ASR model's encoder captures different levels of information with different layers -- the lower layers tend to have more acoustic information, and the upper layers more linguistic. This inspires us to develop a Sidecar separator to empower a well-trained ASR model for multi-talker scenarios by separating the mixed speech embedding between two suitable layers. We experimented with a wav2vec 2.0-based ASR model with a Sidecar mounted. By freezing the parameters of the original model and training only the Sidecar (8.7 M, 8.4% of all parameters), the proposed approach outperforms the previous state-of-the-art by a large margin for the 2-speaker mixed LibriMix dataset, reaching a word error rate (WER) of 10.36%; and obtains comparable results (7.56%) for LibriSpeechMix dataset when limited training.