Abstract:This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020. This challenge involves three tracks to super-resolve an input image for $\times$2, $\times$3 and $\times$4 scaling factors, respectively. The goal is to attract more attention to realistic image degradation for the SR task, which is much more complicated and challenging, and contributes to real-world image super-resolution applications. 452 participants were registered for three tracks in total, and 24 teams submitted their results. They gauge the state-of-the-art approaches for real image SR in terms of PSNR and SSIM.
Abstract:For a better performance in single image super-resolution(SISR), we present an image super-resolution algorithm based on adaptive dense connection (ADCSR). The algorithm is divided into two parts: BODY and SKIP. BODY improves the utilization of convolution features through adaptive dense connections. Also, we develop an adaptive sub-pixel reconstruction layer (AFSL) to reconstruct the features of the BODY output. We pre-trained SKIP to make BODY focus on high-frequency feature learning. The comparison of PSNR, SSIM, and visual effects verify the superiority of our method to the state-of-the-art algorithms.