Abstract:In this paper, we propose an adaptive event-triggered reinforcement learning control for continuous-time nonlinear systems, subject to bounded uncertainties, characterized by complex interactions. Specifically, the proposed method is capable of jointly learning both the control policy and the communication policy, thereby reducing the number of parameters and computational overhead when learning them separately or only one of them. By augmenting the state space with accrued rewards that represent the performance over the entire trajectory, we show that accurate and efficient determination of triggering conditions is possible without the need for explicit learning triggering conditions, thereby leading to an adaptive non-stationary policy. Finally, we provide several numerical examples to demonstrate the effectiveness of the proposed approach.
Abstract:In this paper, we address the problem of enclosing an arbitrarily moving target in three dimensions by a single pursuer, which is an unmanned aerial vehicle (UAV), for maximum coverage while also ensuring the pursuer's safety by preventing collisions with the target. The proposed guidance strategy steers the pursuer to a safe region of space surrounding the target, allowing it to maintain a certain distance from the latter while offering greater flexibility in positioning and converging to any orbit within this safe zone. Our approach is distinguished by the use of nonholonomic constraints to model vehicles with accelerations serving as control inputs and coupled engagement kinematics to craft the pursuer's guidance law meticulously. Furthermore, we leverage the concept of the Lyapunov Barrier Function as a powerful tool to constrain the distance between the pursuer and the target within asymmetric bounds, thereby ensuring the pursuer's safety within the predefined region. To validate the efficacy and robustness of our algorithm, we conduct experimental tests by implementing a high-fidelity quadrotor model within Software-in-the-loop (SITL) simulations, encompassing various challenging target maneuver scenarios. The results obtained showcase the resilience of the proposed guidance law, effectively handling arbitrarily maneuvering targets, vehicle/autopilot dynamics, and external disturbances. Our method consistently delivers stable global enclosing behaviors, even in response to aggressive target maneuvers, and requires only relative information for successful execution.
Abstract:This paper introduces an approach to address the target enclosing problem using non-holonomic multiagent systems, where agents autonomously self-organize themselves in the desired formation around a fixed target. Our approach combines global enclosing behavior and local collision avoidance mechanisms by devising a novel potential function and sliding manifold. In our approach, agents independently move toward the desired enclosing geometry when apart and activate the collision avoidance mechanism when a collision is imminent, thereby guaranteeing inter-agent safety. We rigorously show that an agent does not need to ensure safety with every other agent and put forth a concept of the nearest colliding agent (for any arbitrary agent) with whom ensuring safety is sufficient to avoid collisions in the entire swarm. The proposed control eliminates the need for a fixed or pre-established agent arrangement around the target and requires only relative information between an agent and the target. This makes our design particularly appealing for scenarios with limited global information, hence significantly reducing communication requirements. We finally present simulation results to vindicate the efficacy of the proposed method.
Abstract:This paper develops a novel rating-based reinforcement learning approach that uses human ratings to obtain human guidance in reinforcement learning. Different from the existing preference-based and ranking-based reinforcement learning paradigms, based on human relative preferences over sample pairs, the proposed rating-based reinforcement learning approach is based on human evaluation of individual trajectories without relative comparisons between sample pairs. The rating-based reinforcement learning approach builds on a new prediction model for human ratings and a novel multi-class loss function. We conduct several experimental studies based on synthetic ratings and real human ratings to evaluate the effectiveness and benefits of the new rating-based reinforcement learning approach.
Abstract:In this paper, we address the issue of fairness in preference-based reinforcement learning (PbRL) in the presence of multiple objectives. The main objective is to design control policies that can optimize multiple objectives while treating each objective fairly. Toward this objective, we design a new fairness-induced preference-based reinforcement learning or FPbRL. The main idea of FPbRL is to learn vector reward functions associated with multiple objectives via new welfare-based preferences rather than reward-based preference in PbRL, coupled with policy learning via maximizing a generalized Gini welfare function. Finally, we provide experiment studies on three different environments to show that the proposed FPbRL approach can achieve both efficiency and equity for learning effective and fair policies.
Abstract:Human demonstrations can provide trustful samples to train reinforcement learning algorithms for robots to learn complex behaviors in real-world environments. However, obtaining sufficient demonstrations may be impractical because many behaviors are difficult for humans to demonstrate. A more practical approach is to replace human demonstrations by human queries, i.e., preference-based reinforcement learning. One key limitation of the existing algorithms is the need for a significant amount of human queries because a large number of labeled data is needed to train neural networks for the approximation of a continuous, high-dimensional reward function. To reduce and minimize the need for human queries, we propose a new GAN-assisted human preference-based reinforcement learning approach that uses a generative adversarial network (GAN) to actively learn human preferences and then replace the role of human in assigning preferences. The adversarial neural network is simple and only has a binary output, hence requiring much less human queries to train. Moreover, a maximum entropy based reinforcement learning algorithm is designed to shape the loss towards the desired regions or away from the undesired regions. To show the effectiveness of the proposed approach, we present some studies on complex robotic tasks without access to the environment reward in a typical MuJoCo robot locomotion environment. The obtained results show our method can achieve a reduction of about 99.8% human time without performance sacrifice.
Abstract:In this paper, we study the problem of obtaining a control policy that can mimic and then outperform expert demonstrations in Markov decision processes where the reward function is unknown to the learning agent. One main relevant approach is the inverse reinforcement learning (IRL), which mainly focuses on inferring a reward function from expert demonstrations. The obtained control policy by IRL and the associated algorithms, however, can hardly outperform expert demonstrations. To overcome this limitation, we propose a novel method that enables the learning agent to outperform the demonstrator via a new concurrent reward and action policy learning approach. In particular, we first propose a new stereo utility definition that aims to address the bias in the interpretation of expert demonstrations. We then propose a loss function for the learning agent to learn reward and action policies concurrently such that the learning agent can outperform expert demonstrations. The performance of the proposed method is first demonstrated in OpenAI environments. Further efforts are conducted to experimentally validate the proposed method via an indoor drone flight scenario.
Abstract:In this paper, we focus on developing a novel unsupervised machine learning algorithm, named graph based multi-layer k-means++ (G-MLKM), to solve data-target association problem when targets move on a constrained space and minimal information of the targets can be obtained by sensors. Instead of employing the traditional data-target association methods that are based on statistical probabilities, the G-MLKM solves the problem via data clustering. We first will develop the Multi-layer K-means++ (MLKM) method for data-target association at local space given a simplified constrained space situation. Then a p-dual graph is proposed to represent the general constrained space when local spaces are interconnected. Based on the dual graph and graph theory, we then generalize MLKM to G-MLKM by first understanding local data-target association and then extracting cross-local data-target association mathematically analyze the data association at intersections of that space. To exclude potential data-target association errors that disobey physical rules, we also develop error correction mechanisms to further improve the accuracy. Numerous simulation examples are conducted to demonstrate the performance of G-MLKM.
Abstract:Besides accuracy, the storage of convolutional neural networks (CNN) models is another important factor considering limited hardware resources in practical applications. For example, autonomous driving requires the design of accurate yet fast CNN for low latency in object detection and classification. To fulfill the need, we aim at obtaining CNN models with both high testing accuracy and small size/storage to address resource constraints in many embedded systems. In particular, this paper focuses on proposing a generic reinforcement learning based model compression approach in a two-stage compression pipeline: pruning and quantization. The first stage of compression, i.e., pruning, is achieved via exploiting deep reinforcement learning (DRL) to co-learn the accuracy of CNN models updated after layer-wise channel pruning on a testing dataset and the FLOPs, number of floating point operations in each layer, updated after kernel-wise variational pruning using information dropout. Layer-wise channel pruning is to remove unimportant kernels from the input channel dimension while kernel-wise variational pruning is to remove unimportant kernels from the 2D-kernel dimensions, namely, height and width. The second stage, i.e., quantization, is achieved via a similar DRL approach but focuses on obtaining the optimal weight bits for individual layers. We further conduct experimental results on CIFAR-10 and ImageNet datasets. For the CIFAR-10 dataset, the proposed method can reduce the size of VGGNet by 9x from 20.04MB to 2.2MB with 0.2% accuracy increase. For the ImageNet dataset, the proposed method can reduce the size of VGG-16 by 33x from 138MB to 4.14MB with no accuracy loss.
Abstract:Solving multi-objective optimization problems is important in various applications where users are interested in obtaining optimal policies subject to multiple, yet often conflicting objectives. A typical approach to obtain optimal policies is to first construct a loss function that is based on the scalarization of individual objectives, and then find the optimal policy that minimizes the loss. However, optimizing the scalarized (and weighted) loss does not necessarily provide a guarantee of high performance on each possibly conflicting objective. In this paper, we propose a vector value based reinforcement learning approach that seeks to explicitly learn the inter-objective relationship and optimize multiple objectives based on the learned relationship. In particular, the proposed method is to first define relationship matrix, a mathematical representation of the inter-objective relationship, and then create one actor and multiple critics that can co-learn the relationship matrix and action selection. The proposed approach can quantify the inter-objective relationship via reinforcement learning when the impact of one objective on another is unknown a prior. We also provide rigorous convergence analysis of the proposed approach and present a quantitative evaluation of the approach based on two testing scenarios.