University of Maryland
Abstract:This work introduces a novel graph neural networks (GNNs)-based method to predict stream water temperature and reduce model bias across locations of different income and education levels. Traditional physics-based models often have limited accuracy because they are necessarily approximations of reality. Recently, there has been an increasing interest of using GNNs in modeling complex water dynamics in stream networks. Despite their promise in improving the accuracy, GNNs can bring additional model bias through the aggregation process, where node features are updated by aggregating neighboring nodes. The bias can be especially pronounced when nodes with similar sensitive attributes are frequently connected. We introduce a new method that leverages physical knowledge to represent the node influence in GNNs, and then utilizes physics-based influence to refine the selection and weights over the neighbors. The objective is to facilitate equitable treatment over different sensitive groups in the graph aggregation, which helps reduce spatial bias over locations, especially for those in underprivileged groups. The results on the Delaware River Basin demonstrate the effectiveness of the proposed method in preserving equitable performance across locations in different sensitive groups.
Abstract:This paper introduces a \textit{Process-Guided Learning (Pril)} framework that integrates physical models with recurrent neural networks (RNNs) to enhance the prediction of dissolved oxygen (DO) concentrations in lakes, which is crucial for sustaining water quality and ecosystem health. Unlike traditional RNNs, which may deliver high accuracy but often lack physical consistency and broad applicability, the \textit{Pril} method incorporates differential DO equations for each lake layer, modeling it as a first-order linear solution using a forward Euler scheme with a daily timestep. However, this method is sensitive to numerical instabilities. When drastic fluctuations occur, the numerical integration is neither mass-conservative nor stable. Especially during stratified conditions, exogenous fluxes into each layer cause significant within-day changes in DO concentrations. To address this challenge, we further propose an \textit{Adaptive Process-Guided Learning (April)} model, which dynamically adjusts timesteps from daily to sub-daily intervals with the aim of mitigating the discrepancies caused by variations in entrainment fluxes. \textit{April} uses a generator-discriminator architecture to identify days with significant DO fluctuations and employs a multi-step Euler scheme with sub-daily timesteps to effectively manage these variations. We have tested our methods on a wide range of lakes in the Midwestern USA, and demonstrated robust capability in predicting DO concentrations even with limited training data. While primarily focused on aquatic ecosystems, this approach is broadly applicable to diverse scientific and engineering disciplines that utilize process-based models, such as power engineering, climate science, and biomedicine.
Abstract:Enhancing diverse human decision-making processes in an urban environment is a critical issue across various applications, including ride-sharing vehicle dispatching, public transportation management, and autonomous driving. Offline reinforcement learning (RL) is a promising approach to learn and optimize human urban strategies (or policies) from pre-collected human-generated spatial-temporal urban data. However, standard offline RL faces two significant challenges: (1) data scarcity and data heterogeneity, and (2) distributional shift. In this paper, we introduce MODA -- a Multi-Task Offline Reinforcement Learning with Contrastive Data Sharing approach. MODA addresses the challenges of data scarcity and heterogeneity in a multi-task urban setting through Contrastive Data Sharing among tasks. This technique involves extracting latent representations of human behaviors by contrasting positive and negative data pairs. It then shares data presenting similar representations with the target task, facilitating data augmentation for each task. Moreover, MODA develops a novel model-based multi-task offline RL algorithm. This algorithm constructs a robust Markov Decision Process (MDP) by integrating a dynamics model with a Generative Adversarial Network (GAN). Once the robust MDP is established, any online RL or planning algorithm can be applied. Extensive experiments conducted in a real-world multi-task urban setting validate the effectiveness of MODA. The results demonstrate that MODA exhibits significant improvements compared to state-of-the-art baselines, showcasing its capability in advancing urban decision-making processes. We also made our code available to the research community.
Abstract:Foundation models, i.e., very large deep learning models, have demonstrated impressive performances in various language and vision tasks that are otherwise difficult to reach using smaller-size models. The major success of GPT-type of language models is particularly exciting and raises expectations on the potential of foundation models in other domains including satellite remote sensing. In this context, great efforts have been made to build foundation models to test their capabilities in broader applications, and examples include Prithvi by NASA-IBM, Segment-Anything-Model, ViT, etc. This leads to an important question: Are foundation models always a suitable choice for different remote sensing tasks, and when or when not? This work aims to enhance the understanding of the status and suitability of foundation models for pixel-level classification using multispectral imagery at moderate resolution, through comparisons with traditional machine learning (ML) and regular-size deep learning models. Interestingly, the results reveal that in many scenarios traditional ML models still have similar or better performance compared to foundation models, especially for tasks where texture is less useful for classification. On the other hand, deep learning models did show more promising results for tasks where labels partially depend on texture (e.g., burn scar), while the difference in performance between foundation models and deep learning models is not obvious. The results conform with our analysis: The suitability of foundation models depend on the alignment between the self-supervised learning tasks and the real downstream tasks, and the typical masked autoencoder paradigm is not necessarily suitable for many remote sensing problems.
Abstract:When dealing with data from distinct locations, machine learning algorithms tend to demonstrate an implicit preference of some locations over the others, which constitutes biases that sabotage the spatial fairness of the algorithm. This unfairness can easily introduce biases in subsequent decision-making given broad adoptions of learning-based solutions in practice. However, locational biases in AI are largely understudied. To mitigate biases over locations, we propose a locational meta-referee (Meta-Ref) to oversee the few-shot meta-training and meta-testing of a deep neural network. Meta-Ref dynamically adjusts the learning rates for training samples of given locations to advocate a fair performance across locations, through an explicit consideration of locational biases and the characteristics of input data. We present a three-phase training framework to learn both a meta-learning-based predictor and an integrated Meta-Ref that governs the fairness of the model. Once trained with a distribution of spatial tasks, Meta-Ref is applied to samples from new spatial tasks (i.e., regions outside the training area) to promote fairness during the fine-tune step. We carried out experiments with two case studies on crop monitoring and transportation safety, which show Meta-Ref can improve locational fairness while keeping the overall prediction quality at a similar level.
Abstract:Fairness-awareness has emerged as an essential building block for the responsible use of artificial intelligence in real applications. In many cases, inequity in performance is due to the change in distribution over different regions. While techniques have been developed to improve the transferability of fairness, a solution to the problem is not always feasible with no samples from the new regions, which is a bottleneck for pure data-driven attempts. Fortunately, physics-based mechanistic models have been studied for many problems with major social impacts. We propose SimFair, a physics-guided fairness-aware learning framework, which bridges the data limitation by integrating physical-rule-based simulation and inverse modeling into the training design. Using temperature prediction as an example, we demonstrate the effectiveness of the proposed SimFair in fairness preservation.
Abstract:Modeling environmental ecosystems is critical for the sustainability of our planet, but is extremely challenging due to the complex underlying processes driven by interactions amongst a large number of physical variables. As many variables are difficult to measure at large scales, existing works often utilize a combination of observable features and locally available measurements or modeled values as input to build models for a specific study region and time period. This raises a fundamental question in advancing the modeling of environmental ecosystems: how to build a general framework for modeling the complex relationships amongst various environmental data over space and time? In this paper, we introduce a new framework, FREE, which maps available environmental data into a text space and then converts the traditional predictive modeling task in environmental science to the semantic recognition problem. The proposed FREE framework leverages recent advances in Large Language Models (LLMs) to supplement the original input features with natural language descriptions. This facilitates capturing the data semantics and also allows harnessing the irregularities of input features. When used for long-term prediction, FREE has the flexibility to incorporate newly collected observations to enhance future prediction. The efficacy of FREE is evaluated in the context of two societally important real-world applications, predicting stream water temperature in the Delaware River Basin and predicting annual corn yield in Illinois and Iowa. Beyond the superior predictive performance over multiple baseline methods, FREE is shown to be more data- and computation-efficient as it can be pre-trained on simulated data generated by physics-based models.
Abstract:Neural networks trained on distilled data often produce over-confident output and require correction by calibration methods. Existing calibration methods such as temperature scaling and mixup work well for networks trained on original large-scale data. However, we find that these methods fail to calibrate networks trained on data distilled from large source datasets. In this paper, we show that distilled data lead to networks that are not calibratable due to (i) a more concentrated distribution of the maximum logits and (ii) the loss of information that is semantically meaningful but unrelated to classification tasks. To address this problem, we propose Masked Temperature Scaling (MTS) and Masked Distillation Training (MDT) which mitigate the limitations of distilled data and achieve better calibration results while maintaining the efficiency of dataset distillation.
Abstract:Human mobility estimation is crucial during the COVID-19 pandemic due to its significant guidance for policymakers to make non-pharmaceutical interventions. While deep learning approaches outperform conventional estimation techniques on tasks with abundant training data, the continuously evolving pandemic poses a significant challenge to solving this problem due to data nonstationarity, limited observations, and complex social contexts. Prior works on mobility estimation either focus on a single city or lack the ability to model the spatio-temporal dependencies across cities and time periods. To address these issues, we make the first attempt to tackle the cross-city human mobility estimation problem through a deep meta-generative framework. We propose a Spatio-Temporal Meta-Generative Adversarial Network (STORM-GAN) model that estimates dynamic human mobility responses under a set of social and policy conditions related to COVID-19. Facilitated by a novel spatio-temporal task-based graph (STTG) embedding, STORM-GAN is capable of learning shared knowledge from a spatio-temporal distribution of estimation tasks and quickly adapting to new cities and time periods with limited training samples. The STTG embedding component is designed to capture the similarities among cities to mitigate cross-task heterogeneity. Experimental results on real-world data show that the proposed approach can greatly improve estimation performance and out-perform baselines.
Abstract:The eco-toll estimation problem quantifies the expected environmental cost (e.g., energy consumption, exhaust emissions) for a vehicle to travel along a path. This problem is important for societal applications such as eco-routing, which aims to find paths with the lowest exhaust emissions or energy need. The challenges of this problem are three-fold: (1) the dependence of a vehicle's eco-toll on its physical parameters; (2) the lack of access to data with eco-toll information; and (3) the influence of contextual information (i.e. the connections of adjacent segments in the path) on the eco-toll of road segments. Prior work on eco-toll estimation has mostly relied on pure data-driven approaches and has high estimation errors given the limited training data. To address these limitations, we propose a novel Eco-toll estimation Physics-informed Neural Network framework (Eco-PiNN) using three novel ideas, namely, (1) a physics-informed decoder that integrates the physical laws of the vehicle engine into the network, (2) an attention-based contextual information encoder, and (3) a physics-informed regularization to reduce overfitting. Experiments on real-world heavy-duty truck data show that the proposed method can greatly improve the accuracy of eco-toll estimation compared with state-of-the-art methods.