Abstract:This paper introduces a tuning-free method for both object insertion and subject-driven generation. The task involves composing an object, given multiple views, into a scene specified by either an image or text. Existing methods struggle to fully meet the task's challenging objectives: (i) seamlessly composing the object into the scene with photorealistic pose and lighting, and (ii) preserving the object's identity. We hypothesize that achieving these goals requires large scale supervision, but manually collecting sufficient data is simply too expensive. The key observation in this paper is that many mass-produced objects recur across multiple images of large unlabeled datasets, in different scenes, poses, and lighting conditions. We use this observation to create massive supervision by retrieving sets of diverse views of the same object. This powerful paired dataset enables us to train a straightforward text-to-image diffusion architecture to map the object and scene descriptions to the composited image. We compare our method, ObjectMate, with state-of-the-art methods for object insertion and subject-driven generation, using a single or multiple references. Empirically, ObjectMate achieves superior identity preservation and more photorealistic composition. Differently from many other multi-reference methods, ObjectMate does not require slow test-time tuning.
Abstract:The increasing availability of public models begs the question: can we train neural networks that use other networks as input? This paper learns to represent models within a joint space that embeds both model weights and language. However, machine learning on model weights is challenging as model weights often exhibit significant variation unrelated to the models' semantic properties (nuisance variation). We identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. For example, while classifying models according to their training dataset generally requires complex architectures, in our case, even a linear classifier trained on a single layer is often effective. While effective, linear layers are computationally expensive as model weights are very high dimensional. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated, lightweight probing method. Notably, ProbeX is the first probing method designed to learn from the weights of just a single model layer. We also construct and release a dataset that simulates the structure of public model repositories. Our results show that ProbeX can effectively map the weights of large models into a shared weight-language embedding space. Furthermore, we demonstrate the impressive generalization of our method, achieving zero-shot model classification and retrieval.
Abstract:Weight space learning aims to extract information about a neural network, such as its training dataset or generalization error. Recent approaches learn directly from model weights, but this presents many challenges as weights are high-dimensional and include permutation symmetries between neurons. An alternative approach, Probing, represents a model by passing a set of learned inputs (probes) through the model, and training a predictor on top of the corresponding outputs. Although probing is typically not used as a stand alone approach, our preliminary experiment found that a vanilla probing baseline worked surprisingly well. However, we discover that current probe learning strategies are ineffective. We therefore propose Deep Linear Probe Generators (ProbeGen), a simple and effective modification to probing approaches. ProbeGen adds a shared generator module with a deep linear architecture, providing an inductive bias towards structured probes thus reducing overfitting. While simple, ProbeGen performs significantly better than the state-of-the-art and is very efficient, requiring between 30 to 1000 times fewer FLOPs than other top approaches.
Abstract:Model inversion and membership inference attacks aim to reconstruct and verify the data which a model was trained on. However, they are not guaranteed to find all training samples as they do not know the size of the training set. In this paper, we introduce a new task: dataset size recovery, that aims to determine the number of samples used to train a model, directly from its weights. We then propose DSiRe, a method for recovering the number of images used to fine-tune a model, in the common case where fine-tuning uses LoRA. We discover that both the norm and the spectrum of the LoRA matrices are closely linked to the fine-tuning dataset size; we leverage this finding to propose a simple yet effective prediction algorithm. To evaluate dataset size recovery of LoRA weights, we develop and release a new benchmark, LoRA-WiSE, consisting of over 25000 weight snapshots from more than 2000 diverse LoRA fine-tuned models. Our best classifier can predict the number of fine-tuning images with a mean absolute error of 0.36 images, establishing the feasibility of this attack.
Abstract:Recent improvements in generative AI made synthesizing fake images easy; as they can be used to cause harm, it is crucial to develop accurate techniques to identify them. This paper introduces "Locally Aware Deepfake Detection Algorithm" (LaDeDa), that accepts a single 9x9 image patch and outputs its deepfake score. The image deepfake score is the pooled score of its patches. With merely patch-level information, LaDeDa significantly improves over the state-of-the-art, achieving around 99% mAP on current benchmarks. Owing to the patch-level structure of LaDeDa, we hypothesize that the generation artifacts can be detected by a simple model. We therefore distill LaDeDa into Tiny-LaDeDa, a highly efficient model consisting of only 4 convolutional layers. Remarkably, Tiny-LaDeDa has 375x fewer FLOPs and is 10,000x more parameter-efficient than LaDeDa, allowing it to run efficiently on edge devices with a minor decrease in accuracy. These almost-perfect scores raise the question: is the task of deepfake detection close to being solved? Perhaps surprisingly, our investigation reveals that current training protocols prevent methods from generalizing to real-world deepfakes extracted from social media. To address this issue, we introduce WildRF, a new deepfake detection dataset curated from several popular social networks. Our method achieves the top performance of 93.7% mAP on WildRF, however the large gap from perfect accuracy shows that reliable real-world deepfake detection is still unsolved.
Abstract:When first deploying an anomaly detection system, e.g., to detect out-of-scope queries in chatbots, there are no observed data, making data-driven approaches ineffective. Zero-shot anomaly detection methods offer a solution to such "cold-start" cases, but unfortunately they are often not accurate enough. This paper studies the realistic but underexplored cold-start setting where an anomaly detection model is initialized using zero-shot guidance, but subsequently receives a small number of contaminated observations (namely, that may include anomalies). The goal is to make efficient use of both the zero-shot guidance and the observations. We propose ColdFusion, a method that effectively adapts the zero-shot anomaly detector to contaminated observations. To support future development of this new setting, we propose an evaluation suite consisting of evaluation protocols and metrics.
Abstract:The rapid growth of neural network models shared on the internet has made model weights an important data modality. However, this information is underutilized as the weights are uninterpretable, and publicly available models are disorganized. Inspired by Darwin's tree of life, we define the Model Tree which describes the origin of models i.e., the parent model that was used to fine-tune the target model. Similarly to the natural world, the tree structure is unknown. In this paper, we introduce the task of Model Tree Heritage Recovery (MoTHer Recovery) for discovering Model Trees in the ever-growing universe of neural networks. Our hypothesis is that model weights encode this information, the challenge is to decode the underlying tree structure given the weights. Beyond the immediate application of model authorship attribution, MoTHer recovery holds exciting long-term applications akin to indexing the internet by search engines. Practically, for each pair of models, this task requires: i) determining if they are related, and ii) establishing the direction of the relationship. We find that certain distributional properties of the weights evolve monotonically during training, which enables us to classify the relationship between two given models. MoTHer recovery reconstructs entire model hierarchies, represented by a directed tree, where a parent model gives rise to multiple child models through additional training. Our approach successfully reconstructs complex Model Trees, as well as the structure of "in-the-wild" model families such as Llama 2 and Stable Diffusion.
Abstract:Diffusion models have revolutionized image editing but often generate images that violate physical laws, particularly the effects of objects on the scene, e.g., occlusions, shadows, and reflections. By analyzing the limitations of self-supervised approaches, we propose a practical solution centered on a \q{counterfactual} dataset. Our method involves capturing a scene before and after removing a single object, while minimizing other changes. By fine-tuning a diffusion model on this dataset, we are able to not only remove objects but also their effects on the scene. However, we find that applying this approach for photorealistic object insertion requires an impractically large dataset. To tackle this challenge, we propose bootstrap supervision; leveraging our object removal model trained on a small counterfactual dataset, we synthetically expand this dataset considerably. Our approach significantly outperforms prior methods in photorealistic object removal and insertion, particularly at modeling the effects of objects on the scene.
Abstract:Dataset distillation aims to compress a dataset into a much smaller one so that a model trained on the distilled dataset achieves high accuracy. Current methods frame this as maximizing the distilled classification accuracy for a budget of K distilled images-per-class, where K is a positive integer. In this paper, we push the boundaries of dataset distillation, compressing the dataset into less than an image-per-class. It is important to realize that the meaningful quantity is not the number of distilled images-per-class but the number of distilled pixels-per-dataset. We therefore, propose Poster Dataset Distillation (PoDD), a new approach that distills the entire original dataset into a single poster. The poster approach motivates new technical solutions for creating training images and learnable labels. Our method can achieve comparable or better performance with less than an image-per-class compared to existing methods that use one image-per-class. Specifically, our method establishes a new state-of-the-art performance on CIFAR-10, CIFAR-100, and CUB200 using as little as 0.3 images-per-class.
Abstract:The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral.