Abstract:Fixed-wing Unmanned Aerial Vehicles (UAVs) are one of the most commonly used platforms for the burgeoning Low-altitude Economy (LAE) and Urban Air Mobility (UAM), due to their long endurance and high-speed capabilities. Classical obstacle avoidance systems, which rely on prior maps or sophisticated sensors, face limitations in unknown low-altitude environments and small UAV platforms. In response, this paper proposes a lightweight deep reinforcement learning (DRL) based UAV collision avoidance system that enables a fixed-wing UAV to avoid unknown obstacles at cruise speed over 30m/s, with only onboard visual sensors. The proposed system employs a single-frame image depth inference module with a streamlined network architecture to ensure real-time obstacle detection, optimized for edge computing devices. After that, a reinforcement learning controller with a novel reward function is designed to balance the target approach and flight trajectory smoothness, satisfying the specific dynamic constraints and stability requirements of a fixed-wing UAV platform. An adaptive entropy adjustment mechanism is introduced to mitigate the exploration-exploitation trade-off inherent in DRL, improving training convergence and obstacle avoidance success rates. Extensive software-in-the-loop and hardware-in-the-loop experiments demonstrate that the proposed framework outperforms other methods in obstacle avoidance efficiency and flight trajectory smoothness and confirm the feasibility of implementing the algorithm on edge devices. The source code is publicly available at \url{https://github.com/ch9397/FixedWing-MonoPPO}.
Abstract:Simultaneous Localization and Mapping (SLAM) plays an important role in robot autonomy. Reliability and efficiency are the two most valued features for applying SLAM in robot applications. In this paper, we consider achieving a reliable LiDAR-based SLAM function in computation-limited platforms, such as quadrotor UAVs based on graph-based point cloud association. First, contrary to most works selecting salient features for point cloud registration, we propose a non-conspicuous feature selection strategy for reliability and robustness purposes. Then a two-stage correspondence selection method is used to register the point cloud, which includes a KD-tree-based coarse matching followed by a graph-based matching method that uses geometric consistency to vote out incorrect correspondences. Additionally, we propose an odometry approach where the weight optimizations are guided by vote results from the aforementioned geometric consistency graph. In this way, the optimization of LiDAR odometry rapidly converges and evaluates a fairly accurate transformation resulting in the back-end module efficiently finishing the mapping task. Finally, we evaluate our proposed framework on the KITTI odometry dataset and real-world environments. Experiments show that our SLAM system achieves a comparative level or higher level of accuracy with more balanced computation efficiency compared with the mainstream LiDAR-based SLAM solutions.
Abstract:In recent years, autonomous robots have become ubiquitous in research and daily life. Among many factors, public datasets play an important role in the progress of this field, as they waive the tall order of initial investment in hardware and manpower. However, for research on autonomous aerial systems, there appears to be a relative lack of public datasets on par with those used for autonomous driving and ground robots. Thus, to fill in this gap, we conduct a data collection exercise on an aerial platform equipped with an extensive and unique set of sensors: two 3D lidars, two hardware-synchronized global-shutter cameras, multiple Inertial Measurement Units (IMUs), and especially, multiple Ultra-wideband (UWB) ranging units. The comprehensive sensor suite resembles that of an autonomous driving car, but features distinct and challenging characteristics of aerial operations. We record multiple datasets in several challenging indoor and outdoor conditions. Calibration results and ground truth from a high-accuracy laser tracker are also included in each package. All resources can be accessed via our webpage https://ntu-aris.github.io/ntu_viral_dataset.
Abstract:In this paper we investigate a tightly coupled Lidar-Inertia Odometry and Mapping (LIOM) scheme, with the capability to incorporate multiple lidars with complementary field of view (FOV). In essence, we devise a time-synchronized scheme to combine extracted features from separate lidars into a single pointcloud, which is then used to construct a local map and compute the feature-map matching (FMM) coefficients. These coefficients, along with the IMU preinteration observations, are then used to construct a factor graph that will be optimized to produce an estimate of the sliding window trajectory. We also propose a key frame-based map management strategy to marginalize certain poses and pointclouds in the sliding window to grow a global map, which is used to assemble the local map in the later stage. The use of multiple lidars with complementary FOV and the global map ensures that our estimate has low drift and can sustain good localization in situations where single lidar use gives poor result, or even fails to work. Multi-thread computation implementations are also adopted to fractionally cut down the computation time and ensure real-time performance. We demonstrate the efficacy of our system via a series of experiments on public datasets collected from an aerial vehicle.
Abstract:Unmanned Aerial Vehicle (UAV) has already demonstrated its potential in many civilian applications, and the fa\c{c}ade inspection is among the most promising ones. In this paper, we focus on enabling the autonomous perception and control of a small UAV for a fa\c{c}ade inspection task. Specifically, we consider the perception as a planar object pose estimation problem by simplifying the building structure as concatenation of planes, and the control as an optimal reference tracking control problem. First, a vision based adaptive observer is proposed which can realize stable plane pose estimation under very mild observation conditions. Second, a model predictive controller is designed to achieve stable tracking and smooth transition in a multi-plane scenario, while the persistent excitation (PE) condition of the observer and the maneuver constraints of the UAV are satisfied. The proposed autonomous plane pose estimation and plane tracking methods are tested in both simulation and practical building fas\c{c}ade inspection scenarios, which demonstrate their effectiveness and practicability.
Abstract:Although Simultaneous Localization and Mapping (SLAM) has been an active research topic for decades, current state-of-the-art methods still suffer from instability or inaccuracy due to feature insufficiency or its inherent estimation drift, in many civilian environments. To resolve these issues, we propose a navigation system combing the SLAM and prior-map-based localization. Specifically, we consider additional integration of line and plane features, which are ubiquitous and more structurally salient in civilian environments, into the SLAM to ensure feature sufficiency and localization robustness. More importantly, we incorporate general prior map information into the SLAM to restrain its drift and improve the accuracy. To avoid rigorous association between prior information and local observations, we parameterize the prior knowledge as low dimensional structural priors defined as relative distances/angles between different geometric primitives. The localization is formulated as a graph-based optimization problem that contains sliding-window-based variables and factors, including IMU, heterogeneous features, and structure priors. We also derive the analytical expressions of Jacobians of different factors to avoid the automatic differentiation overhead. To further alleviate the computation burden of incorporating structural prior factors, a selection mechanism is adopted based on the so-called information gain to incorporate only the most effective structure priors in the graph optimization. Finally, the proposed framework is extensively tested on synthetic data, public datasets, and, more importantly, on the real UAV flight data obtained from a building inspection task. The results show that the proposed scheme can effectively improve the accuracy and robustness of localization for autonomous robots in civilian applications.
Abstract:In recent years, thanks to the continuously reduced cost and weight of 3D Lidar, the applications of this type of sensor in robotics community have become increasingly popular. Despite many progresses, estimation drift and tracking loss are still prevalent concerns associated with these systems. However, in theory these issues can be resolved with the use of some observations to fixed landmarks in the environments. This motivates us to investigate a tightly coupled sensor fusion scheme of Ultra-Wideband (UWB) range measurements with Lidar and inertia measurements. First, data from IMU, Lidar and UWB are associated with the robot's states on a sliding windows based on their timestamps. Then, we construct a cost function comprising of factors from UWB, Lidar and IMU preintegration measurements. Finally an optimization process is carried out to estimate the robot's position and orientation. Via some real world experiments, we show that the method can effectively resolve the drift issue, while only requiring two or three anchors deployed in the environment.
Abstract:In recent years, Onboard Self Localization (OSL) methods based on cameras or Lidar have achieved many significant progresses. However, some issues such as estimation drift and feature-dependence still remain inherent limitations. On the other hand, infrastructure-based methods can generally overcome these issues, but at the expense of some installation cost. This poses an interesting problem of how to effectively combine these methods, so as to achieve localization with long-term consistency as well as flexibility compared to any single method. To this end, we propose a comprehensive optimization-based estimator for 15-dimensional state of an Unmanned Aerial Vehicle (UAV), fusing data from an extensive set of sensors: inertial measurement units (IMUs), Ultra-Wideband (UWB) ranging sensors, and multiple onboard Visual-Inertial and Lidar odometry subsystems. In essence, a sliding window is used to formulate a sequence of robot poses, where relative rotational and translational constraints between these poses are observed in the IMU preintegration and OSL observations, while orientation and position are coupled in body-offset UWB range observations. An optimization-based approach is developed to estimate the trajectory of the robot in this sliding window. We evaluate the performance of the proposed scheme in multiple scenarios, including experiments on public datasets, high-fidelity graphical-physical simulator, and field-collected data from UAV flight tests. The result demonstrates that our integrated localization method can effectively resolve the drift issue, while incurring minimal installation requirements.
Abstract:Flocking control has been studied extensively along with the wide application of multi-vehicle systems. In this paper the Multi-vehicles System (MVS) flocking control with collision avoidance and communication preserving is considered based on the deep reinforcement learning framework. Specifically the deep deterministic policy gradient (DDPG) with centralized training and distributed execution process is implemented to obtain the flocking control policy. First, to avoid the dynamically changed observation of state, a three layers tensor based representation of the observation is used so that the state remains constant although the observation dimension is changing. A reward function is designed to guide the way-points tracking, collision avoidance and communication preserving. The reward function is augmented by introducing the local reward function of neighbors. Finally, a centralized training process which trains the shared policy based on common training set among all agents. The proposed method is tested under simulated scenarios with different setup.