Abstract:Existing approaches defend against backdoor attacks in federated learning (FL) mainly through a) mitigating the impact of infected models, or b) excluding infected models. The former negatively impacts model accuracy, while the latter usually relies on globally clear boundaries between benign and infected model updates. However, model updates are easy to be mixed and scattered throughout in reality due to the diverse distributions of local data. This work focuses on excluding infected models in FL. Unlike previous perspectives from a global view, we propose Snowball, a novel anti-backdoor FL framework through bidirectional elections from an individual perspective inspired by one principle deduced by us and two principles in FL and deep learning. It is characterized by a) bottom-up election, where each candidate model update votes to several peer ones such that a few model updates are elected as selectees for aggregation; and b) top-down election, where selectees progressively enlarge themselves through picking up from the candidates. We compare Snowball with state-of-the-art defenses to backdoor attacks in FL on five real-world datasets, demonstrating its superior resistance to backdoor attacks and slight impact on the accuracy of the global model.
Abstract:Integrating native AI support into the network architecture is an essential objective of 6G. Federated Learning (FL) emerges as a potential paradigm, facilitating decentralized AI model training across a diverse range of devices under the coordination of a central server. However, several challenges hinder its wide application in the 6G context, such as malicious attacks and privacy snooping on local model updates, and centralization pitfalls. This work proposes a trusted architecture for supporting FL, which utilizes Distributed Ledger Technology (DLT) and Graph Neural Network (GNN), including three key features. First, a pre-processing layer employing homomorphic encryption is incorporated to securely aggregate local models, preserving the privacy of individual models. Second, given the distributed nature and graph structure between clients and nodes in the pre-processing layer, GNN is leveraged to identify abnormal local models, enhancing system security. Third, DLT is utilized to decentralize the system by selecting one of the candidates to perform the central server's functions. Additionally, DLT ensures reliable data management by recording data exchanges in an immutable and transparent ledger. The feasibility of the novel architecture is validated through simulations, demonstrating improved performance in anomalous model detection and global model accuracy compared to relevant baselines.
Abstract:Ubiquitous sensors and smart devices from factories and communities guarantee massive amounts of data and ever-increasing computing power is driving the core of computation and services from the cloud to the edge of the network. As an important enabler broadly changing people's lives, from face recognition to ambitious smart factories and cities, artificial intelligence (especially deep learning) applications and services have experienced a thriving development process. However, due to efficiency and latency issues, the current cloud computing service architecture hinders the vision of "providing artificial intelligence for every person and every organization at everywhere". Thus, recently, a better solution is unleashing deep learning services from the cloud to the edge near to data sources. Therefore, edge intelligence, aiming to facilitate the deployment of deep learning services by edge computing, has received great attention. In addition, deep learning, as the main representative of artificial intelligence, can be integrated into edge computing frameworks to build intelligent edge for dynamic, adaptive edge maintenance and management. With regard to mutually benefited edge intelligence and intelligent edge, this paper introduces and discusses: 1) the application scenarios of both; 2) the practical implementation methods and enabling technologies, namely deep learning training and inference in the customized edge computing framework; 3) existing challenges and future trends of more pervasive and fine-grained intelligence. We believe that this survey can help readers to garner information scattered across the communication, networking, and deep learning, understand the connections between enabling technologies, and promotes further discussions on the fusion of edge intelligence and intelligent edge.