Abstract:Large language models (LLMs) can pass explicit bias tests but still harbor implicit biases, similar to humans who endorse egalitarian beliefs yet exhibit subtle biases. Measuring such implicit biases can be a challenge: as LLMs become increasingly proprietary, it may not be possible to access their embeddings and apply existing bias measures; furthermore, implicit biases are primarily a concern if they affect the actual decisions that these systems make. We address both of these challenges by introducing two measures of bias inspired by psychology: LLM Implicit Association Test (IAT) Bias, which is a prompt-based method for revealing implicit bias; and LLM Decision Bias for detecting subtle discrimination in decision-making tasks. Using these measures, we found pervasive human-like stereotype biases in 6 LLMs across 4 social domains (race, gender, religion, health) and 21 categories (weapons, guilt, science, career among others). Our prompt-based measure of implicit bias correlates with embedding-based methods but better predicts downstream behaviors measured by LLM Decision Bias. This measure is based on asking the LLM to decide between individuals, motivated by psychological results indicating that relative not absolute evaluations are more related to implicit biases. Using prompt-based measures informed by psychology allows us to effectively expose nuanced biases and subtle discrimination in proprietary LLMs that do not show explicit bias on standard benchmarks.
Abstract:As machine learning applications proliferate, we need an understanding of their potential for harm. However, current fairness metrics are rarely grounded in human psychological experiences of harm. Drawing on the social psychology of stereotypes, we use a case study of gender stereotypes in image search to examine how people react to machine learning errors. First, we use survey studies to show that not all machine learning errors reflect stereotypes nor are equally harmful. Then, in experimental studies we randomly expose participants to stereotype-reinforcing, -violating, and -neutral machine learning errors. We find stereotype-reinforcing errors induce more experientially (i.e., subjectively) harmful experiences, while having minimal changes to cognitive beliefs, attitudes, or behaviors. This experiential harm impacts women more than men. However, certain stereotype-violating errors are more experientially harmful for men, potentially due to perceived threats to masculinity. We conclude that harm cannot be the sole guide in fairness mitigation, and propose a nuanced perspective depending on who is experiencing what harm and why.
Abstract:Interaction and cooperation with humans are overarching aspirations of artificial intelligence (AI) research. Recent studies demonstrate that AI agents trained with deep reinforcement learning are capable of collaborating with humans. These studies primarily evaluate human compatibility through "objective" metrics such as task performance, obscuring potential variation in the levels of trust and subjective preference that different agents garner. To better understand the factors shaping subjective preferences in human-agent cooperation, we train deep reinforcement learning agents in Coins, a two-player social dilemma. We recruit participants for a human-agent cooperation study and measure their impressions of the agents they encounter. Participants' perceptions of warmth and competence predict their stated preferences for different agents, above and beyond objective performance metrics. Drawing inspiration from social science and biology research, we subsequently implement a new "partner choice" framework to elicit revealed preferences: after playing an episode with an agent, participants are asked whether they would like to play the next round with the same agent or to play alone. As with stated preferences, social perception better predicts participants' revealed preferences than does objective performance. Given these results, we recommend human-agent interaction researchers routinely incorporate the measurement of social perception and subjective preferences into their studies.