Abstract:Integrated sensing and communication (ISAC) has emerged as a promising technology to facilitate high-rate communications and super-resolution sensing, particularly operating in the millimeter wave (mmWave) band. However, the vulnerability of mmWave signals to blockages severely impairs ISAC capabilities and coverage. To tackle this, an efficient and low-cost solution is to deploy distributed reconfigurable intelligent surfaces (RISs) to construct virtual links between the base stations (BSs) and users in a controllable fashion. In this paper, we investigate the generalized RIS-assisted mmWave ISAC networks considering the blockage effect, and examine the beneficial impact of RISs on the coverage rate utilizing stochastic geometry. Specifically, taking into account the coupling effect of ISAC dual functions within the same network topology, we derive the conditional coverage probability of ISAC performance for two association cases, based on the proposed beam pattern model and user association policies. Then, the marginal coverage rate is calculated by combining these two cases through the distance-dependent thinning method. Simulation results verify the accuracy of derived theoretical formulations and provide valuable guidelines for the practical network deployment. Specifically, our results indicate the superiority of the RIS deployment with the density of 40 km${}^{-2}$ BSs, and that the joint coverage rate of ISAC performance exhibits potential growth from $67.1\%$ to $92.2\%$ with the deployment of RISs.
Abstract:Integrated sensing and communication (ISAC) is increasingly recognized as a pivotal technology for next-generation cellular networks, offering mutual benefits in both sensing and communication capabilities. This advancement necessitates a re-examination of the fundamental limits within networks where these two functions coexist via shared spectrum and infrastructures. However, traditional stochastic geometry-based performance analyses are confined to either communication or sensing networks separately. This paper bridges this gap by introducing a generalized stochastic geometry framework in ISAC networks. Based on this framework, we define and calculate the coverage and ergodic rate of sensing and communication performance under resource constraints. Then, we shed light on the fundamental limits of ISAC networks by presenting theoretical results for the coverage rate of the unified performance, taking into account the coupling effects of dual functions in coexistence networks. Further, we obtain the analytical formulations for evaluating the ergodic sensing rate constrained by the maximum communication rate, and the ergodic communication rate constrained by the maximum sensing rate. Extensive numerical results validate the accuracy of all theoretical derivations, and also indicate that denser networks significantly enhance ISAC coverage. Specifically, increasing the base station density from $1$ $\text{km}^{-2}$ to $10$ $\text{km}^{-2}$ can boost the ISAC coverage rate from $1.4\%$ to $39.8\%$. Further, results also reveal that with the increase of the constrained sensing rate, the ergodic communication rate improves significantly, but the reverse is not obvious.
Abstract:Reconfigurable intelligent surface (RIS) has great potential to improve the performance of integrated sensing and communication (ISAC) systems, especially in scenarios where line-of-sight paths between the base station and users are blocked. However, the spectral efficiency (SE) of RIS-aided ISAC uplink transmissions may be drastically reduced by the heavy burden of pilot overhead for realizing sensing capabilities. In this paper, we tackle this bottleneck by proposing a superimposed symbol scheme, which superimposes sensing pilots onto data symbols over the same time-frequency resources. Specifically, we develop a structure-aware sparse Bayesian learning framework, where decoded data symbols serve as side information to enhance sensing performance and increase SE. To meet the low-latency requirements of emerging ISAC applications, we further propose a low-complexity simultaneous communication and localization algorithm for multiple users. This algorithm employs the unitary approximate message passing in the Bayesian learning framework for initial angle estimate, followed by iterative refinements through reduced-dimension matrix calculations. Moreover, the sparse code multiple access technology is incorporated into this iterative framework for accurate data detection which also facilitates localization. Numerical results show that the proposed superimposed symbol-based scheme empowered by the developed algorithm can achieve centimeter-level localization while attaining up to $96\%$ of the SE of conventional communications without sensing capabilities. Moreover, compared to other typical ISAC schemes, the proposed superimposed symbol scheme can provide an effective throughput improvement over $133\%$.
Abstract:Current image captioning works usually focus on generating descriptions in an autoregressive manner. However, there are limited works that focus on generating descriptions non-autoregressively, which brings more decoding diversity. Inspired by the success of diffusion models on generating natural-looking images, we propose a novel method DiffCap to apply continuous diffusions on image captioning. Unlike image generation where the output is fixed-size and continuous, image description length varies with discrete tokens. Our method transforms discrete tokens in a natural way and applies continuous diffusion on them to successfully fuse extracted image features for diffusion caption generation. Our experiments on COCO dataset demonstrate that our method uses a much simpler structure to achieve comparable results to the previous non-autoregressive works. Apart from quality, an intriguing property of DiffCap is its high diversity during generation, which is missing from many autoregressive models. We believe our method on fusing multimodal features in diffusion language generation will inspire more researches on multimodal language generation tasks for its simplicity and decoding flexibility.
Abstract:Reconfigurable intelligent surface (RIS) can be employed in a cell-free system to create favorable propagation conditions from base stations (BSs) to users via configurable elements. However, prior works on RIS-aided cell-free system designs mainly rely on the instantaneous channel state information (CSI), which may incur substantial overhead due to extremely high dimensions of estimated channels. To mitigate this issue, a low-complexity algorithm via the two-timescale transmission protocol is proposed in this paper, where the joint beamforming at BSs and RISs is facilitated via alternating optimization framework to maximize the average weighted sum-rate. Specifically, the passive beamformers at RISs are optimized through the statistical CSI, and the transmit beamformers at BSs are based on the instantaneous CSI of effective channels. In this manner, a closed-form expression for the achievable weighted sum-rate is derived, which enables the evaluation of the impact of key parameters on system performance. To gain more insights, a special case without line-of-sight (LoS) components is further investigated, where a power gain on the order of $\mathcal{O}(M)$ is achieved, with $M$ being the BS antennas number. Numerical results validate the tightness of our derived analytical expression and show the fast convergence of the proposed algorithm. Findings illustrate that the performance of the proposed algorithm with two-timescale CSI is comparable to that with instantaneous CSI in low or moderate SNR regime. The impact of key system parameters such as the number of RIS elements, CSI settings and Rician factor is also evaluated. Moreover, the remarkable advantages from the adoption of the cell-free paradigm and the deployment of RISs are demonstrated intuitively.