Abstract:Accurately segmenting brain tumors from MRI scans is important for developing effective treatment plans and improving patient outcomes. This study introduces a new implementation of the Columbia-University-Net (CU-Net) architecture for brain tumor segmentation using the BraTS 2019 dataset. The CU-Net model has a symmetrical U-shaped structure and uses convolutional layers, max pooling, and upsampling operations to achieve high-resolution segmentation. Our CU-Net model achieved a Dice score of 82.41%, surpassing two other state-of-the-art models. This improvement in segmentation accuracy highlights the robustness and effectiveness of the model, which helps to accurately delineate tumor boundaries, which is crucial for surgical planning and radiation therapy, and ultimately has the potential to improve patient outcomes.
Abstract:Proteins are essential for life, and their structure determines their function. The protein secondary structure is formed by the folding of the protein primary structure, and the protein tertiary structure is formed by the bending and folding of the secondary structure. Therefore, the study of protein secondary structure is very helpful to the overall understanding of protein structure. Although the accuracy of protein secondary structure prediction has continuously improved with the development of machine learning and deep learning, progress in the field of protein structure prediction, unfortunately, remains insufficient to meet the large demand for protein information. Therefore, based on the advantages of deep learning-based methods in feature extraction and learning ability, this paper adopts a two-dimensional fusion deep neural network model, DstruCCN, which uses Convolutional Neural Networks (CCN) and a supervised Transformer protein language model for single-sequence protein structure prediction. The training features of the two are combined to predict the protein Transformer binding site matrix, and then the three-dimensional structure is reconstructed using energy minimization.
Abstract:In recent years, the rapid development of high-precision map technology combined with artificial intelligence has ushered in a new development opportunity in the field of intelligent vehicles. High-precision map technology is an important guarantee for intelligent vehicles to achieve autonomous driving. However, due to the lack of research on high-precision map technology, it is difficult to rationally use this technology in the field of intelligent vehicles. Therefore, relevant researchers studied a fast and effective algorithm to generate high-precision GPS data from a large number of low-precision GPS trajectory data fusion, and generated several key data points to simplify the description of GPS trajectory, and realized the "crowdsourced update" model based on a large number of social vehicles for map data collection came into being. This kind of algorithm has the important significance to improve the data accuracy, reduce the measurement cost and reduce the data storage space. On this basis, this paper analyzes the implementation form of crowdsourcing map, so as to improve the various information data in the high-precision map according to the actual situation, and promote the high-precision map can be reasonably applied to the intelligent car.
Abstract:Gastrointestinal (GI) tract cancers pose a global health challenge, demanding precise radiotherapy planning for optimal treatment outcomes. This paper introduces a cutting-edge approach to automate the segmentation of GI tract regions in magnetic resonance imaging (MRI) scans. Leveraging advanced deep learning architectures, the proposed model integrates Inception-V4 for initial classification, UNet++ with a VGG19 encoder for 2.5D data, and Edge UNet for grayscale data segmentation. Meticulous data preprocessing, including innovative 2.5D processing, is employed to enhance adaptability, robustness, and accuracy. This work addresses the manual and time-consuming segmentation process in current radiotherapy planning, presenting a unified model that captures intricate anatomical details. The integration of diverse architectures, each specializing in unique aspects of the segmentation task, signifies a novel and comprehensive solution. This model emerges as an efficient and accurate tool for clinicians, marking a significant advancement in the field of GI tract image segmentation for radiotherapy planning.
Abstract:Modern social intelligence includes the ability to watch videos and answer questions about social and theory-of-mind-related content, e.g., for a scene in Harry Potter, "Is the father really upset about the boys flying the car?" Social visual question answering (social VQA) is emerging as a valuable methodology for studying social reasoning in both humans (e.g., children with autism) and AI agents. However, this problem space spans enormous variations in both videos and questions. We discuss methods for creating and characterizing social VQA datasets, including 1) crowdsourcing versus in-house authoring, including sample comparisons of two new datasets that we created (TinySocial-Crowd and TinySocial-InHouse) and the previously existing Social-IQ dataset; 2) a new rubric for characterizing the difficulty and content of a given video; and 3) a new rubric for characterizing question types. We close by describing how having well-characterized social VQA datasets will enhance the explainability of AI agents and can also inform assessments and educational interventions for people.