Abstract:Cardiovascular disease (CVD) persists as a primary cause of death on a global scale, which requires more effective and timely detection methods. Traditional supervised learning approaches for CVD detection rely heavily on large-labeled datasets, which are often difficult to obtain. This paper employs semi-supervised learning models to boost efficiency and accuracy of CVD detection when there are few labeled samples. By leveraging both labeled and vast amounts of unlabeled data, our approach demonstrates improvements in prediction performance, while reducing the dependency on labeled data. Experimental results in a publicly available dataset show that semi-supervised models outperform traditional supervised learning techniques, providing an intriguing approach for the initial identification of cardiovascular disease within clinical environments.
Abstract:Recent studies revealed structural and functional brain changes in heavy smokers. However, the specific changes in topological brain connections are not well understood. We used Gaussian Undirected Graphs with the graphical lasso algorithm on rs-fMRI data from smokers and non-smokers to identify significant changes in brain connections. Our results indicate high stability in the estimated graphs and identify several brain regions significantly affected by smoking, providing valuable insights for future clinical research.
Abstract:Lung cancer remains a leading cause of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) being the most common subtype. This study aimed to identify key biomarkers associated with stage III NSCLC in non-smoking females using gene expression profiling from the GDS3837 dataset. Utilizing XGBoost, a machine learning algorithm, the analysis achieved a strong predictive performance with an AUC score of 0.835. The top biomarkers identified - CCAAT enhancer binding protein alpha (C/EBP-alpha), lactate dehydrogenase A4 (LDHA), UNC-45 myosin chaperone B (UNC-45B), checkpoint kinase 1 (CHK1), and hypoxia-inducible factor 1 subunit alpha (HIF-1-alpha) - have been validated in the literature as being significantly linked to lung cancer. These findings highlight the potential of these biomarkers for early diagnosis and personalized therapy, emphasizing the value of integrating machine learning with molecular profiling in cancer research.
Abstract:Accurately segmenting brain tumors from MRI scans is important for developing effective treatment plans and improving patient outcomes. This study introduces a new implementation of the Columbia-University-Net (CU-Net) architecture for brain tumor segmentation using the BraTS 2019 dataset. The CU-Net model has a symmetrical U-shaped structure and uses convolutional layers, max pooling, and upsampling operations to achieve high-resolution segmentation. Our CU-Net model achieved a Dice score of 82.41%, surpassing two other state-of-the-art models. This improvement in segmentation accuracy highlights the robustness and effectiveness of the model, which helps to accurately delineate tumor boundaries, which is crucial for surgical planning and radiation therapy, and ultimately has the potential to improve patient outcomes.