Abstract:Graph Neural Networks (GNNs) have superior capability in learning graph data. Full-graph GNN training generally has high accuracy, however, it suffers from large peak memory usage and encounters the Out-of-Memory problem when handling large graphs. To address this memory problem, a popular solution is mini-batch GNN training. However, mini-batch GNN training increases the training variance and sacrifices the model accuracy. In this paper, we propose a new memory-efficient GNN training method using spanning subgraph, called SpanGNN. SpanGNN trains GNN models over a sequence of spanning subgraphs, which are constructed from empty structure. To overcome the excessive peak memory consumption problem, SpanGNN selects a set of edges from the original graph to incrementally update the spanning subgraph between every epoch. To ensure the model accuracy, we introduce two types of edge sampling strategies (i.e., variance-reduced and noise-reduced), and help SpanGNN select high-quality edges for the GNN learning. We conduct experiments with SpanGNN on widely used datasets, demonstrating SpanGNN's advantages in the model performance and low peak memory usage.
Abstract:Many real-time applications of the Internet of Things (IoT) need to deal with correlated information generated by multiple sensors. The design of efficient status update strategies that minimize the Age of Correlated Information (AoCI) is a key factor. In this paper, we consider an IoT network consisting of sensors equipped with the energy harvesting (EH) capability. We optimize the average AoCI at the data fusion center (DFC) by appropriately managing the energy harvested by sensors, whose true battery states are unobservable during the decision-making process. Particularly, we first formulate the dynamic status update procedure as a partially observable Markov decision process (POMDP), where the environmental dynamics are unknown to the DFC. In order to address the challenges arising from the causality of energy usage, unknown environmental dynamics, unobservability of sensors'true battery states, and large-scale discrete action space, we devise a deep reinforcement learning (DRL)-based dynamic status update algorithm. The algorithm leverages the advantages of the soft actor-critic and long short-term memory techniques. Meanwhile, it incorporates our proposed action decomposition and mapping mechanism. Extensive simulations are conducted to validate the effectiveness of our proposed algorithm by comparing it with available DRL algorithms for POMDPs.
Abstract:As a fine-grained segmentation task, human parsing is still faced with two challenges: inter-part indistinction and intra-part inconsistency, due to the ambiguous definitions and confusing relationships between similar human parts. To tackle these two problems, this paper proposes a novel \textit{Affinity-aware Compression and Expansion} Network (ACENet), which mainly consists of two modules: Local Compression Module (LCM) and Global Expansion Module (GEM). Specifically, LCM compresses parts-correlation information through structural skeleton points, obtained from an extra skeleton branch. It can decrease the inter-part interference, and strengthen structural relationships between ambiguous parts. Furthermore, GEM expands semantic information of each part into a complete piece by incorporating the spatial affinity with boundary guidance, which can effectively enhance the semantic consistency of intra-part as well. ACENet achieves new state-of-the-art performance on the challenging LIP and Pascal-Person-Part datasets. In particular, 58.1% mean IoU is achieved on the LIP benchmark.