Abstract:In this paper we study the problem of estimating the migration direction of cells based on a single image. To the best of our knowledge, there is only one related work that uses a classification CNN for four classes (quadrants). This approach does not allow detailed directional resolution. We solve the single image estimation problem using deep circular regression with special attention to cycle-sensitive methods. On two databases we achieve an average accuracy of $\sim$17 degrees, which is a significant improvement over the previous work.
Abstract:Deep Neural Networks are widely used in academy as well as corporate and public applications, including safety critical applications such as health care and autonomous driving. The ability to explain their output is critical for safety reasons as well as acceptance among applicants. A multitude of methods have been proposed to explain real-valued neural networks. Recently, complex-valued neural networks have emerged as a new class of neural networks dealing with complex-valued input data without the necessity of projecting them onto $\mathbb{R}^2$. This brings up the need to develop explanation algorithms for this kind of neural networks. In this paper we provide these developments. While we focus on adapting the widely used DeepSHAP algorithm to the complex domain, we also present versions of four gradient based explanation methods suitable for use in complex-valued neural networks. We evaluate the explanation quality of all presented algorithms and provide all of them as an open source library adaptable to most recent complex-valued neural network architectures.
Abstract:Patients often face difficulties in understanding their hospitalizations, while healthcare workers have limited resources to provide explanations. In this work, we investigate the potential of large language models to generate patient summaries based on doctors' notes and study the effect of training data on the faithfulness and quality of the generated summaries. To this end, we develop a rigorous labeling protocol for hallucinations, and have two medical experts annotate 100 real-world summaries and 100 generated summaries. We show that fine-tuning on hallucination-free data effectively reduces hallucinations from 2.60 to 1.55 per summary for Llama 2, while preserving relevant information. Although the effect is still present, it is much smaller for GPT-4 when prompted with five examples (0.70 to 0.40). We also conduct a qualitative evaluation using hallucination-free and improved training data. GPT-4 shows very good results even in the zero-shot setting. We find that common quantitative metrics do not correlate well with faithfulness and quality. Finally, we test GPT-4 for automatic hallucination detection, which yields promising results.
Abstract:Phacoemulsification cataract surgery (PCS) is a routine procedure conducted using a surgical microscope, heavily reliant on the skill of the ophthalmologist. While existing PCS guidance systems extract valuable information from surgical microscopic videos to enhance intraoperative proficiency, they suffer from non-phasespecific guidance, leading to redundant visual information. In this study, our major contribution is the development of a novel phase-specific augmented reality (AR) guidance system, which offers tailored AR information corresponding to the recognized surgical phase. Leveraging the inherent quasi-standardized nature of PCS procedures, we propose a two-stage surgical microscopic video recognition network. In the first stage, we implement a multi-task learning structure to segment the surgical limbus region and extract limbus region-focused spatial feature for each frame. In the second stage, we propose the long-short spatiotemporal aggregation transformer (LS-SAT) network to model local fine-grained and global temporal relationships, and combine the extracted spatial features to recognize the current surgical phase. Additionally, we collaborate closely with ophthalmologists to design AR visual cues by utilizing techniques such as limbus ellipse fitting and regional restricted normal cross-correlation rotation computation. We evaluated the network on publicly available and in-house datasets, with comparison results demonstrating its superior performance compared to related works. Ablation results further validated the effectiveness of the limbus region-focused spatial feature extractor and the combination of temporal features. Furthermore, the developed system was evaluated in a clinical setup, with results indicating remarkable accuracy and real-time performance. underscoring its potential for clinical applications.
Abstract:Most deep learning pipelines are built on real-valued operations to deal with real-valued inputs such as images, speech or music signals. However, a lot of applications naturally make use of complex-valued signals or images, such as MRI or remote sensing. Additionally the Fourier transform of signals is complex-valued and has numerous applications. We aim to make deep learning directly applicable to these complex-valued signals without using projections into $\mathbb{R}^2$. Thus we add to the recent developments of complex-valued neural networks by presenting building blocks to transfer the transformer architecture to the complex domain. We present multiple versions of a complex-valued Scaled Dot-Product Attention mechanism as well as a complex-valued layer normalization. We test on a classification and a sequence generation task on the MusicNet dataset and show improved robustness to overfitting while maintaining on-par performance when compared to the real-valued transformer architecture.
Abstract:We study the application of large language models to zero-shot and few-shot classification of tabular data. We prompt the large language model with a serialization of the tabular data to a natural-language string, together with a short description of the classification problem. In the few-shot setting, we fine-tune the large language model using some labeled examples. We evaluate several serialization methods including templates, table-to-text models, and large language models. Despite its simplicity, we find that this technique outperforms prior deep-learning-based tabular classification methods on several benchmark datasets. In most cases, even zero-shot classification obtains non-trivial performance, illustrating the method's ability to exploit prior knowledge encoded in large language models. Unlike many deep learning methods for tabular datasets, this approach is also competitive with strong traditional baselines like gradient-boosted trees, especially in the very-few-shot setting.
Abstract:Computing a consensus object from a set of given objects is a core problem in machine learning and pattern recognition. One popular approach is to formulate it as an optimization problem using the generalized median. Previous methods like the Prototype and Distance-Preserving Embedding methods transform objects into a vector space, solve the generalized median problem in this space, and inversely transform back into the original space. Both of these methods have been successfully applied to a wide range of object domains, where the generalized median problem has inherent high computational complexity (typically $\mathcal{NP}$-hard) and therefore approximate solutions are required. Previously, explicit embedding methods were used in the computation, which often do not reflect the spatial relationship between objects exactly. In this work we introduce a kernel-based generalized median framework that is applicable to both positive definite and indefinite kernels. This framework computes the relationship between objects and its generalized median in kernel space, without the need of an explicit embedding. We show that the spatial relationship between objects is more accurately represented in kernel space than in an explicit vector space using easy-to-compute kernels, and demonstrate superior performance of generalized median computation on datasets of three different domains. A software toolbox resulting from our work is made publicly available to encourage other researchers to explore the generalized median computation and applications.
Abstract:One well established method of interactive image segmentation is the random walker algorithm. Considerable research on this family of segmentation methods has been continuously conducted in recent years with numerous applications. These methods are common in using a simple Gaussian weight function which depends on a parameter that strongly influences the segmentation performance. In this work we propose a general framework of deriving weight functions based on probabilistic modeling. This framework can be concretized to cope with virtually any well-defined noise model. It eliminates the critical parameter and thus avoids time-consuming parameter search. We derive the specific weight functions for common noise types and show their superior performance on synthetic data as well as different biomedical image data (MRI images from the NYU fastMRI dataset, larvae images acquired with the FIM technique). Our framework can also be used in multiple other applications, e.g., the graph cut algorithm and its extensions.
Abstract:Advances in 3D imaging technology in recent years have allowed for increasingly high resolution volumetric images of large specimen. The resulting datasets of hundreds of Gigabytes in size call for new scalable and memory efficient approaches in the field of image processing, where some progress has been made already. At the same time, quantitative evaluation of these new methods is difficult both in terms of the availability of specific data sizes and in the generation of associated ground truth data. In this paper we present an algorithmic framework that can be used to efficiently generate test (and ground truth) volume data, optionally even in a streaming fashion. As the proposed nested sweeps algorithm is fast, it can be used to generate test data on demand. We analyze the asymptotic run time of the presented algorithm and compare it experimentally to alternative approaches as well as a hypothetical best-case baseline method. In a case study, the framework is applied to the popular VascuSynth software for vascular image generation, making it capable of efficiently producing larger-than-main memory volumes which is demonstrated by generating a trillion voxel (1TB) image. Implementations of the presented framework are available online in the form of the modified version of Vascusynth and the code used for the experimental evaluation. In addition, the test data generation procedure has been integrated into the popular volume rendering and processing framework Voreen.
Abstract:The random walker method for image segmentation is a popular tool for semi-automatic image segmentation, especially in the biomedical field. However, its linear asymptotic run time and memory requirements make application to 3D datasets of increasing sizes impractical. We propose a hierarchical framework that, to the best of our knowledge, is the first attempt to overcome these restrictions for the random walker algorithm and achieves sublinear run time and constant memory complexity. The method is evaluated on synthetic data and real data from current biomedical research, where high segmentation quality is quantitatively confirmed and visually observed, respectively. The incremental (i.e., interaction update) run time is demonstrated to be in seconds on a standard PC even for volumes of hundreds of Gigabytes in size. An implementation of the presented method is publicly available in version 5.2 of the widely used volume rendering and processing software Voreen (https://www.uni-muenster.de/Voreen/).