Abstract:The training paradigm integrating large language models (LLM) is gradually reshaping sequential recommender systems (SRS) and has shown promising results. However, most existing LLM-enhanced methods rely on rich textual information on the item side and instance-level supervised fine-tuning (SFT) to inject collaborative information into LLM, which is inefficient and limited in many applications. To alleviate these problems, this paper proposes a novel practice-friendly two-stage LLM-enhanced paradigm (TSLRec) for SRS. Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model, which is more efficient and compatible with limited text information. We aim to let LLM try to infer the latent category of each item and reconstruct the corresponding user's preference distribution for all categories from the user's interaction sequence. In the information augmentation stage, we feed each item into LLM to obtain a set of enhanced embeddings that combine collaborative information and LLM inference capabilities. These embeddings can then be used to help train various future SRS models. Finally, we verify the effectiveness and efficiency of our TSLRec on three SRS benchmark datasets.
Abstract:Debiased recommendation with a randomized dataset has shown very promising results in mitigating the system-induced biases. However, it still lacks more theoretical insights or an ideal optimization objective function compared with the other more well studied route without a randomized dataset. To bridge this gap, we study the debiasing problem from a new perspective and propose to directly minimize the upper bound of an ideal objective function, which facilitates a better potential solution to the system-induced biases. Firstly, we formulate a new ideal optimization objective function with a randomized dataset. Secondly, according to the prior constraints that an adopted loss function may satisfy, we derive two different upper bounds of the objective function, i.e., a generalization error bound with the triangle inequality and a generalization error bound with the separability. Thirdly, we show that most existing related methods can be regarded as the insufficient optimization of these two upper bounds. Fourthly, we propose a novel method called debiasing approximate upper bound with a randomized dataset (DUB), which achieves a more sufficient optimization of these upper bounds. Finally, we conduct extensive experiments on a public dataset and a real product dataset to verify the effectiveness of our DUB.