Abstract:Sequential recommendation has attracted a lot of attention from both academia and industry, however the privacy risks associated to gathering and transferring users' personal interaction data are often underestimated or ignored. Existing privacy-preserving studies are mainly applied to traditional collaborative filtering or matrix factorization rather than sequential recommendation. Moreover, these studies are mostly based on differential privacy or federated learning, which often leads to significant performance degradation, or has high requirements for communication. In this work, we address privacy-preserving from a different perspective. Unlike existing research, we capture collaborative signals of neighbor interaction sequences and directly inject indistinguishable items into the target sequence before the recommendation process begins, thereby increasing the perplexity of the target sequence. Even if the target interaction sequence is obtained by attackers, it is difficult to discern which ones are the actual user interaction records. To achieve this goal, we propose a CoLlaborative-cOnfusion seqUential recommenDer, namely CLOUD, which incorporates a collaborative confusion mechanism to edit the raw interaction sequences before conducting recommendation. Specifically, CLOUD first calculates the similarity between the target interaction sequence and other neighbor sequences to find similar sequences. Then, CLOUD considers the shared representation of the target sequence and similar sequences to determine the operation to be performed: keep, delete, or insert. We design a copy mechanism to make items from similar sequences have a higher probability to be inserted into the target sequence. Finally, the modified sequence is used to train the recommender and predict the next item.
Abstract:Unlike the conventional facial expressions, micro-expressions are involuntary and transient facial expressions capable of revealing the genuine emotions that people attempt to hide. Therefore, they can provide important information in a broad range of applications such as lie detection, criminal detection, etc. Since micro-expressions are transient and of low intensity, however, their detection and recognition is difficult and relies heavily on expert experiences. Due to its intrinsic particularity and complexity, video-based micro-expression analysis is attractive but challenging, and has recently become an active area of research. Although there have been numerous developments in this area, thus far there has been no comprehensive survey that provides researchers with a systematic overview of these developments with a unified evaluation. Accordingly, in this survey paper, we first highlight the key differences between macro- and micro-expressions, then use these differences to guide our research survey of video-based micro-expression analysis in a cascaded structure, encompassing the neuropsychological basis, datasets, features, spotting algorithms, recognition algorithms, applications and evaluation of state-of-the-art approaches. For each aspect, the basic techniques, advanced developments and major challenges are addressed and discussed. Furthermore, after considering the limitations of existing micro-expression datasets, we present and release a new dataset - called micro-and-macro expression warehouse (MMEW) - containing more video samples and more labeled emotion types. We then perform a unified comparison of representative methods on CAS(ME)2 for spotting, and on MMEW and SAMM for recognition, respectively. Finally, some potential future research directions are explored and outlined.