Abstract:Sequential recommendation has attracted a lot of attention from both academia and industry, however the privacy risks associated to gathering and transferring users' personal interaction data are often underestimated or ignored. Existing privacy-preserving studies are mainly applied to traditional collaborative filtering or matrix factorization rather than sequential recommendation. Moreover, these studies are mostly based on differential privacy or federated learning, which often leads to significant performance degradation, or has high requirements for communication. In this work, we address privacy-preserving from a different perspective. Unlike existing research, we capture collaborative signals of neighbor interaction sequences and directly inject indistinguishable items into the target sequence before the recommendation process begins, thereby increasing the perplexity of the target sequence. Even if the target interaction sequence is obtained by attackers, it is difficult to discern which ones are the actual user interaction records. To achieve this goal, we propose a CoLlaborative-cOnfusion seqUential recommenDer, namely CLOUD, which incorporates a collaborative confusion mechanism to edit the raw interaction sequences before conducting recommendation. Specifically, CLOUD first calculates the similarity between the target interaction sequence and other neighbor sequences to find similar sequences. Then, CLOUD considers the shared representation of the target sequence and similar sequences to determine the operation to be performed: keep, delete, or insert. We design a copy mechanism to make items from similar sequences have a higher probability to be inserted into the target sequence. Finally, the modified sequence is used to train the recommender and predict the next item.