Abstract:Accurate segmentation of punctate white matter lesions (PWMLs) are fundamental for the timely diagnosis and treatment of related developmental disorders. Automated PWMLs segmentation from infant brain MR images is challenging, considering that the lesions are typically small and low-contrast, and the number of lesions may dramatically change across subjects. Existing learning-based methods directly apply general network architectures to this challenging task, which may fail to capture detailed positional information of PWMLs, potentially leading to severe under-segmentations. In this paper, we propose to leverage the idea of counterfactual reasoning coupled with the auxiliary task of brain tissue segmentation to learn fine-grained positional and morphological representations of PWMLs for accurate localization and segmentation. A simple and easy-to-implement deep-learning framework (i.e., DeepPWML) is accordingly designed. It combines the lesion counterfactual map with the tissue probability map to train a lightweight PWML segmentation network, demonstrating state-of-the-art performance on a real-clinical dataset of infant T1w MR images. The code is available at \href{https://github.com/ladderlab-xjtu/DeepPWML}{https://github.com/ladderlab-xjtu/DeepPWML}.
Abstract:The captured images under low light conditions often suffer insufficient brightness and notorious noise. Hence, low-light image enhancement is a key challenging task in computer vision. A variety of methods have been proposed for this task, but these methods often failed in an extreme low-light environment and amplified the underlying noise in the input image. To address such a difficult problem, this paper presents a novel attention-based neural network to generate high-quality enhanced low-light images from the raw sensor data. Specifically, we first employ attention strategy (i.e. channel attention and spatial attention modules) to suppress undesired chromatic aberration and noise. The channel attention module guides the network to refine redundant colour features. The spatial attention module focuses on denoising by taking advantage of the non-local correlation in the image. Furthermore, we propose a new pooling layer, called inverted shuffle layer, which adaptively selects useful information from previous features. Extensive experiments demonstrate the superiority of the proposed network in terms of suppressing the chromatic aberration and noise artifacts in enhancement, especially when the low-light image has severe noise.
Abstract:Accurate segmentation of punctate white matter lesions (PWML) in preterm neonates by an automatic algorithm can better assist doctors in diagnosis. However, the existing algorithms have many limitations, such as low detection accuracy and large resource consumption. In this paper, a novel spatiotemporal transformation deep learning method called Trident Segmentation CNN (TS-CNN) is proposed to segment PWML in MR images. It can convert spatial information into temporal information, which reduces the consumption of computing resources. Furthermore, a new improved training loss called Self-balancing Focal Loss (SBFL) is proposed to balance the loss during the training process. The whole model is evaluated on a dataset of 704 MR images. Overall the method achieves median DSC, sensitivity, specificity, and Hausdorff distance of 0.6355, 0.7126, 0.9998, and 24.5836 mm which outperforms the state-of-the-art algorithm. (The code is now available on https://github.com/YalongLiu/Trident-Segmentation-CNN)
Abstract:Accurate segmentation of punctate white matter lesion (PWML) in infantile brains by an automatic algorithm can reduce the potential risk of postnatal development. How to segment PWML effectively has become one of the active topics in medical image segmentation in recent years. In this paper, we construct an efficient two-stage PWML semantic segmentation network based on the characteristics of the lesion, called refined segmentation R-CNN (RS RCNN). We propose a heuristic RPN (H-RPN) which can utilize surrounding information around the PWMLs for heuristic segmentation. Also, we design a lightweight segmentation network to segment the lesion in a fast way. Densely connected conditional random field (DCRF) is used to optimize the segmentation results. We only use T1w MRIs to segment PWMLs. The result shows that our model can well segment the lesion of ordinary size or even pixel size. The Dice similarity coefficient reaches 0.6616, the sensitivity is 0.7069, the specificity is 0.9997, and the Hausdorff distance is 52.9130. The proposed method outperforms the state-of-the-art algorithm. (The code of this paper is available on https://github.com/YalongLiu/Refined-Segmentation-R-CNN)