Abstract:Accurate segmentation of punctate white matter lesions (PWML) in preterm neonates by an automatic algorithm can better assist doctors in diagnosis. However, the existing algorithms have many limitations, such as low detection accuracy and large resource consumption. In this paper, a novel spatiotemporal transformation deep learning method called Trident Segmentation CNN (TS-CNN) is proposed to segment PWML in MR images. It can convert spatial information into temporal information, which reduces the consumption of computing resources. Furthermore, a new improved training loss called Self-balancing Focal Loss (SBFL) is proposed to balance the loss during the training process. The whole model is evaluated on a dataset of 704 MR images. Overall the method achieves median DSC, sensitivity, specificity, and Hausdorff distance of 0.6355, 0.7126, 0.9998, and 24.5836 mm which outperforms the state-of-the-art algorithm. (The code is now available on https://github.com/YalongLiu/Trident-Segmentation-CNN)
Abstract:Accurate segmentation of punctate white matter lesion (PWML) in infantile brains by an automatic algorithm can reduce the potential risk of postnatal development. How to segment PWML effectively has become one of the active topics in medical image segmentation in recent years. In this paper, we construct an efficient two-stage PWML semantic segmentation network based on the characteristics of the lesion, called refined segmentation R-CNN (RS RCNN). We propose a heuristic RPN (H-RPN) which can utilize surrounding information around the PWMLs for heuristic segmentation. Also, we design a lightweight segmentation network to segment the lesion in a fast way. Densely connected conditional random field (DCRF) is used to optimize the segmentation results. We only use T1w MRIs to segment PWMLs. The result shows that our model can well segment the lesion of ordinary size or even pixel size. The Dice similarity coefficient reaches 0.6616, the sensitivity is 0.7069, the specificity is 0.9997, and the Hausdorff distance is 52.9130. The proposed method outperforms the state-of-the-art algorithm. (The code of this paper is available on https://github.com/YalongLiu/Refined-Segmentation-R-CNN)