Shenzhen University
Abstract:With the rapid development of high-resolution 3D vision applications, the traditional way of manipulating surface detail requires considerable memory and computing time. To address these problems, we introduce an efficient surface detail processing framework in 2D normal domain, which extracts new normal feature representations as the carrier of micro geometry structures that are illustrated both theoretically and empirically in this article. Compared with the existing state of the arts, we verify and demonstrate that the proposed normal-based representation has three important properties, including detail separability, detail transferability and detail idempotence. Finally, three new schemes are further designed for geometric surface detail processing applications, including geometric texture synthesis, geometry detail transfer, and 3D surface super-resolution. Theoretical analysis and experimental results on the latest benchmark dataset verify the effectiveness and versatility of our normal-based representation, which accepts 30 times of the input surface vertices but at the same time only takes 6.5% memory cost and 14.0% running time in comparison with existing competing algorithms.
Abstract:Semantic scene completion (SSC) requires an accurate understanding of the geometric and semantic relationships between the objects in the 3D scene for reasoning the occluded objects. The popular SSC methods voxelize the 3D objects, allowing the deep 3D convolutional network (3D CNN) to learn the object relationships from the complex scenes. However, the current networks lack the controllable kernels to model the object relationship across multiple views, where appropriate views provide the relevant information for suggesting the existence of the occluded objects. In this paper, we propose Cross-View Synthesis Transformer (CVSformer), which consists of Multi-View Feature Synthesis and Cross-View Transformer for learning cross-view object relationships. In the multi-view feature synthesis, we use a set of 3D convolutional kernels rotated differently to compute the multi-view features for each voxel. In the cross-view transformer, we employ the cross-view fusion to comprehensively learn the cross-view relationships, which form useful information for enhancing the features of individual views. We use the enhanced features to predict the geometric occupancies and semantic labels of all voxels. We evaluate CVSformer on public datasets, where CVSformer yields state-of-the-art results.
Abstract:Just noticeable difference (JND) refers to the maximum visual change that human eyes cannot perceive, and it has a wide range of applications in multimedia systems. However, most existing JND approaches only focus on a single modality, and rarely consider the complementary effects of multimodal information. In this article, we investigate the JND modeling from an end-to-end homologous multimodal perspective, namely hmJND-Net. Specifically, we explore three important visually sensitive modalities, including saliency, depth, and segmentation. To better utilize homologous multimodal information, we establish an effective fusion method via summation enhancement and subtractive offset, and align homologous multimodal features based on a self-attention driven encoder-decoder paradigm. Extensive experimental results on eight different benchmark datasets validate the superiority of our hmJND-Net over eight representative methods.
Abstract:Deep high dynamic range (HDR) imaging as an image translation issue has achieved great performance without explicit optical flow alignment. However, challenges remain over content association ambiguities especially caused by saturation and large-scale movements. To address the ghosting issue and enhance the details in saturated regions, we propose a scale-aware two-stage high dynamic range imaging framework (STHDR) to generate high-quality ghost-free HDR image. The scale-aware technique and two-stage fusion strategy can progressively and effectively improve the HDR composition performance. Specifically, our framework consists of feature alignment and two-stage fusion. In feature alignment, we propose a spatial correct module (SCM) to better exploit useful information among non-aligned features to avoid ghosting and saturation. In the first stage of feature fusion, we obtain a preliminary fusion result with little ghosting. In the second stage, we conflate the results of the first stage with aligned features to further reduce residual artifacts and thus improve the overall quality. Extensive experimental results on the typical test dataset validate the effectiveness of the proposed STHDR in terms of speed and quality.
Abstract:Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues, i.e., modeling the relationship between surface orientation and intensity at each pixel. Photometric stereo prevails in superior per-pixel resolution and fine reconstruction details. However, it is a complicated problem because of the non-linear relationship caused by non-Lambertian surface reflectance. Recently, various deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces. This paper provides a comprehensive review of existing deep learning-based calibrated photometric stereo methods. We first analyze these methods from different perspectives, including input processing, supervision, and network architecture. We summarize the performance of deep learning photometric stereo models on the most widely-used benchmark data set. This demonstrates the advanced performance of deep learning-based photometric stereo methods. Finally, we give suggestions and propose future research trends based on the limitations of existing models.