Abstract:Linear block transform coding remains a fundamental component of image and video compression. Although the Discrete Cosine Transform (DCT) is widely employed in all current compression standards, its sub-optimality has sparked ongoing research into discovering more efficient alternative transforms even for fields where it represents a consolidated tool. In this paper, we introduce a novel linear block transform called the Rate Distortion Learned Transform (RDLT), a data-driven transform specifically designed to minimize the rate-distortion (RD) cost when approximating residual blocks. Our approach builds on the latest end-to-end learned compression frameworks, adopting back-propagation and stochastic gradient descent for optimization. However, unlike the nonlinear transforms used in variational autoencoder (VAE)-based methods, the goal is to create a simpler yet optimal linear block transform, ensuring practical integration into existing image and video compression standards. Differently from existing data-driven methods that design transforms based on sample covariance matrices, such as the Karhunen-Lo\`eve Transform (KLT), the proposed RDLT is directly optimized from an RD perspective. Experimental results show that this transform significantly outperforms the DCT or other existing data-driven transforms. Additionally, it is shown that when simulating the integration of our RDLT into a VVC-like image compression framework, the proposed transform brings substantial improvements. All the code used in our experiments has been made publicly available at [1].
Abstract:Most learned B-frame codecs with hierarchical temporal prediction suffer from the domain shift issue caused by the discrepancy in the Group-of-Pictures (GOP) size used for training and test. As such, the motion estimation network may fail to predict large motion properly. One effective strategy to mitigate this domain shift issue is to downsample video frames for motion estimation. However, finding the optimal downsampling factor involves a time-consuming rate-distortion optimization process. This work introduces lightweight classifiers to determine the downsampling factor. To strike a good rate-distortion-complexity trade-off, our classifiers observe simple state signals, including only the coding and reference frames, to predict the best downsampling factor. We present two variants that adopt binary and multi-class classifiers, respectively. The binary classifier adopts the Focal Loss for training, classifying between motion estimation at high and low resolutions. Our multi-class classifier is trained with novel soft labels incorporating the knowledge of the rate-distortion costs of different downsampling factors. Both variants operate as add-on modules without the need to re-train the B-frame codec. Experimental results confirm that they achieve comparable coding performance to the brute-force search methods while greatly reducing computational complexity.
Abstract:This paper aims to delve into the rate-distortion-complexity trade-offs of modern neural video coding. Recent years have witnessed much research effort being focused on exploring the full potential of neural video coding. Conditional autoencoders have emerged as the mainstream approach to efficient neural video coding. The central theme of conditional autoencoders is to leverage both spatial and temporal information for better conditional coding. However, a recent study indicates that conditional coding may suffer from information bottlenecks, potentially performing worse than traditional residual coding. To address this issue, recent conditional coding methods incorporate a large number of high-resolution features as the condition signal, leading to a considerable increase in the number of multiply-accumulate operations, memory footprint, and model size. Taking DCVC as the common code base, we investigate how the newly proposed conditional residual coding, an emerging new school of thought, and its variants may strike a better balance among rate, distortion, and complexity.
Abstract:This paper presents the first-ever study of adapting compressed image latents to suit the needs of downstream vision tasks that adopt Multimodal Large Language Models (MLLMs). MLLMs have extended the success of large language models to modalities (e.g. images) beyond text, but their billion scale hinders deployment on resource-constrained end devices. While cloud-hosted MLLMs could be available, transmitting raw, uncompressed images captured by end devices to the cloud requires an efficient image compression system. To address this, we focus on emerging neural image compression and propose a novel framework with a lightweight transform-neck and a surrogate loss to adapt compressed image latents for MLLM-based vision tasks. The proposed framework is generic and applicable to multiple application scenarios, where the neural image codec can be (1) pre-trained for human perception without updating, (2) fully updated for joint human and machine perception, or (3) fully updated for only machine perception. The transform-neck trained with the surrogate loss is universal, for it can serve various downstream vision tasks enabled by a variety of MLLMs that share the same visual encoder. Our framework has the striking feature of excluding the downstream MLLMs from training the transform-neck, and potentially the neural image codec as well. This stands out from most existing coding for machine approaches that involve downstream networks in training and thus could be impractical when the networks are MLLMs. Extensive experiments on different neural image codecs and various MLLM-based vision tasks show that our method achieves great rate-accuracy performance with much less complexity, demonstrating its effectiveness.
Abstract:Learned hierarchical B-frame coding aims to leverage bi-directional reference frames for better coding efficiency. However, the domain shift between training and test scenarios due to dataset limitations poses a challenge. This issue arises from training the codec with small groups of pictures (GOP) but testing it on large GOPs. Specifically, the motion estimation network, when trained on small GOPs, is unable to handle large motion at test time, incurring a negative impact on compression performance. To mitigate the domain shift, we present an online motion resolution adaptation (OMRA) method. It adapts the spatial resolution of video frames on a per-frame basis to suit the capability of the motion estimation network in a pre-trained B-frame codec. Our OMRA is an online, inference technique. It need not re-train the codec and is readily applicable to existing B-frame codecs that adopt hierarchical bi-directional prediction. Experimental results show that OMRA significantly enhances the compression performance of two state-of-the-art learned B-frame codecs on commonly used datasets.
Abstract:This work introduces a Transformer-based image compression system. It has the flexibility to switch between the standard image reconstruction and the denoising reconstruction from a single compressed bitstream. Instead of training separate decoders for these tasks, we incorporate two add-on modules to adapt a pre-trained image decoder from performing the standard image reconstruction to joint decoding and denoising. Our scheme adopts a two-pronged approach. It features a latent refinement module to refine the latent representation of a noisy input image for reconstructing a noise-free image. Additionally, it incorporates an instance-specific prompt generator that adapts the decoding process to improve on the latent refinement. Experimental results show that our method achieves a similar level of denoising quality to training a separate decoder for joint decoding and denoising at the expense of only a modest increase in the decoder's model size and computational complexity.
Abstract:The incorporation of LiDAR technology into some high-end smartphones has unlocked numerous possibilities across various applications, including photography, image restoration, augmented reality, and more. In this paper, we introduce a novel direction that harnesses LiDAR depth maps to enhance the compression of the corresponding RGB camera images. Specifically, we propose a Transformer-based learned image compression system capable of achieving variable-rate compression using a single model while utilizing the LiDAR depth map as supplementary information for both the encoding and decoding processes. Experimental results demonstrate that integrating LiDAR yields an average PSNR gain of 0.83 dB and an average bitrate reduction of 16% as compared to its absence.
Abstract:Conditional coding has lately emerged as the mainstream approach to learned video compression. However, a recent study shows that it may perform worse than residual coding when the information bottleneck arises. Conditional residual coding was thus proposed, creating a new school of thought to improve on conditional coding. Notably, conditional residual coding relies heavily on the assumption that the residual frame has a lower entropy rate than that of the intra frame. Recognizing that this assumption is not always true due to dis-occlusion phenomena or unreliable motion estimates, we propose a masked conditional residual coding scheme. It learns a soft mask to form a hybrid of conditional coding and conditional residual coding in a pixel adaptive manner. We introduce a Transformer-based conditional autoencoder. Several strategies are investigated with regard to how to condition a Transformer-based autoencoder for inter-frame coding, a topic that is largely under-explored. Additionally, we propose a channel transform module (CTM) to decorrelate the image latents along the channel dimension, with the aim of using the simple hyperprior to approach similar compression performance to the channel-wise autoregressive model. Experimental results confirm the superiority of our masked conditional residual transformer (termed MaskCRT) to both conditional coding and conditional residual coding. On commonly used datasets, MaskCRT shows comparable BD-rate results to VTM-17.0 under the low delay P configuration in terms of PSNR-RGB. It also opens up a new research direction for advancing learned video compression.
Abstract:This paper presents a Transformer-based image compression system that allows for a variable image quality objective according to the user's preference. Optimizing a learned codec for different quality objectives leads to reconstructed images with varying visual characteristics. Our method provides the user with the flexibility to choose a trade-off between two image quality objectives using a single, shared model. Motivated by the success of prompt-tuning techniques, we introduce prompt tokens to condition our Transformer-based autoencoder. These prompt tokens are generated adaptively based on the user's preference and input image through learning a prompt generation network. Extensive experiments on commonly used quality metrics demonstrate the effectiveness of our method in adapting the encoding and/or decoding processes to a variable quality objective. While offering the additional flexibility, our proposed method performs comparably to the single-objective methods in terms of rate-distortion performance.
Abstract:Deep learning is commonly used to reconstruct HDR images from LDR images. LDR stack-based methods are used for single-image HDR reconstruction, generating an HDR image from a deep learning-generated LDR stack. However, current methods generate the stack with predetermined exposure values (EVs), which may limit the quality of HDR reconstruction. To address this, we propose the continuous exposure value representation (CEVR), which uses an implicit function to generate LDR images with arbitrary EVs, including those unseen during training. Our approach generates a continuous stack with more images containing diverse EVs, significantly improving HDR reconstruction. We use a cycle training strategy to supervise the model in generating continuous EV LDR images without corresponding ground truths. Our CEVR model outperforms existing methods, as demonstrated by experimental results.