Abstract:Self-supervised learning (SSL) has emerged as a promising paradigm in medical imaging, addressing the chronic challenge of limited labeled data in healthcare settings. While SSL has shown impressive results, existing studies in the medical domain are often limited in scope, focusing on specific datasets or modalities, or evaluating only isolated aspects of model performance. This fragmented evaluation approach poses a significant challenge, as models deployed in critical medical settings must not only achieve high accuracy but also demonstrate robust performance and generalizability across diverse datasets and varying conditions. To address this gap, we present a comprehensive evaluation of SSL methods within the medical domain, with a particular focus on robustness and generalizability. Using the MedMNIST dataset collection as a standardized benchmark, we evaluate 8 major SSL methods across 11 different medical datasets. Our study provides an in-depth analysis of model performance in both in-domain scenarios and the detection of out-of-distribution (OOD) samples, while exploring the effect of various initialization strategies, model architectures, and multi-domain pre-training. We further assess the generalizability of SSL methods through cross-dataset evaluations and the in-domain performance with varying label proportions (1%, 10%, and 100%) to simulate real-world scenarios with limited supervision. We hope this comprehensive benchmark helps practitioners and researchers make more informed decisions when applying SSL methods to medical applications.
Abstract:The study of vision-and-language navigation (VLN) has typically relied on expert trajectories, which may not always be available in real-world situations due to the significant effort required to collect them. On the other hand, existing approaches to training VLN agents that go beyond available expert data involve data augmentations or online exploration which can be tedious and risky. In contrast, it is easy to access large repositories of suboptimal offline trajectories. Inspired by research in offline reinforcement learning (ORL), we introduce a new problem setup of VLN-ORL which studies VLN using suboptimal demonstration data. We introduce a simple and effective reward-conditioned approach that can account for dataset suboptimality for training VLN agents, as well as benchmarks to evaluate progress and promote research in this area. We empirically study various noise models for characterizing dataset suboptimality among other unique challenges in VLN-ORL and instantiate it for the VLN$\circlearrowright$BERT and MTVM architectures in the R2R and RxR environments. Our experiments demonstrate that the proposed reward-conditioned approach leads to significant performance improvements, even in complex and intricate environments.
Abstract:Single-source open-domain generalization (SS-ODG) addresses the challenge of labeled source domains with supervision during training and unlabeled novel target domains during testing. The target domain includes both known classes from the source domain and samples from previously unseen classes. Existing techniques for SS-ODG primarily focus on calibrating source-domain classifiers to identify open samples in the target domain. However, these methods struggle with visually fine-grained open-closed data, often misclassifying open samples as closed-set classes. Moreover, relying solely on a single source domain restricts the model's ability to generalize. To overcome these limitations, we propose a novel framework called SODG-Net that simultaneously synthesizes novel domains and generates pseudo-open samples using a learning-based objective, in contrast to the ad-hoc mixing strategies commonly found in the literature. Our approach enhances generalization by diversifying the styles of known class samples using a novel metric criterion and generates diverse pseudo-open samples to train a unified and confident multi-class classifier capable of handling both open and closed-set data. Extensive experimental evaluations conducted on multiple benchmarks consistently demonstrate the superior performance of SODG-Net compared to the literature.
Abstract:Capturing high-resolution magnetic resonance (MR) images is a time consuming process, which makes it unsuitable for medical emergencies and pediatric patients. Low-resolution MR imaging, by contrast, is faster than its high-resolution counterpart, but it compromises on fine details necessary for a more precise diagnosis. Super-resolution (SR), when applied to low-resolution MR images, can help increase their utility by synthetically generating high-resolution images with little additional time. In this paper, we present a SR technique for MR images that is based on generative adversarial networks (GANs), which have proven to be quite useful in generating sharp-looking details in SR. We introduce a conditional GAN with perceptual loss, which is conditioned upon the input low-resolution image, which improves the performance for isotropic and anisotropic MRI super-resolution.