Abstract:Learning deep discrete latent presentations offers a promise of better symbolic and summarized abstractions that are more useful to subsequent downstream tasks. Inspired by the seminal Vector Quantized Variational Auto-Encoder (VQ-VAE), most of work in learning deep discrete representations has mainly focused on improving the original VQ-VAE form and none of them has studied learning deep discrete representations from the generative viewpoint. In this work, we study learning deep discrete representations from the generative viewpoint. Specifically, we endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution via minimizing a WS distance between them. We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution. Finally, we empirically evaluate our method on several well-known benchmarks, where it achieves better qualitative and quantitative performances than the other VQ-VAE variants in terms of the codebook utilization and image reconstruction/generation.
Abstract:Bayesian Neural Networks (BNNs) offer a probabilistic interpretation for deep learning models by imposing a prior distribution over model parameters and inferencing a posterior distribution based on observed data. The model sampled from the posterior distribution can be used for providing ensemble predictions and quantifying prediction uncertainty. It is well-known that deep learning models with a lower sharpness have a better generalization ability. Nonetheless, existing posterior inferences are not aware of sharpness/flatness, hence possibly leading to high sharpness for the models sampled from it. In this paper, we develop theories, the Bayesian setting, and the variational inference approach for the sharpness-aware posterior. Specifically, the models sampled from our sharpness-aware posterior and the optimal approximate posterior estimating this sharpness-aware posterior have a better flatness, hence possibly possessing a higher generalization ability. We conduct experiments by leveraging the sharpness-aware posterior with the state-of-the-art Bayesian Neural Networks, showing that the flat-seeking counterparts outperform their baselines in all metrics of interest.
Abstract:Model-based reinforcement learning has the potential to be more sample efficient than model-free approaches. However, existing model-based methods are vulnerable to model bias, which leads to poor generalization and asymptotic performance compared to model-free counterparts. In addition, they are typically based on the model predictive control (MPC) framework, which not only is computationally inefficient at decision time but also does not enable policy transfer due to the lack of an explicit policy representation. In this paper, we propose a novel uncertainty-aware model-based policy optimization framework which solves those issues. In this framework, the agent simultaneously learns an uncertainty-aware dynamics model and optimizes the policy according to these learned models. In the optimization step, the policy gradient is computed by automatic differentiation through the models. With respect to sample efficiency alone, our approach shows promising results on challenging continuous control benchmarks with competitive asymptotic performance and significantly lower sample complexity than state-of-the-art baselines.