Abstract:Unmanned Aerial Vehicle (UAV) has gained significant traction in the recent years, particularly the context of surveillance. However, video datasets that capture violent and non-violent human activity from aerial point-of-view is scarce. To address this issue, we propose a novel, baseline simulator which is capable of generating sequences of photo-realistic synthetic images of crowds engaging in various activities that can be categorized as violent or non-violent. The crowd groups are annotated with bounding boxes that are automatically computed using semantic segmentation. Our simulator is capable of generating large, randomized urban environments and is able to maintain an average of 25 frames per second on a mid-range computer with 150 concurrent crowd agents interacting with each other. We also show that when synthetic data from the proposed simulator is augmented with real world data, binary video classification accuracy is improved by 5% on average across two different models.
Abstract:While describing Spatio-temporal events in natural language, video captioning models mostly rely on the encoder's latent visual representation. Recent progress on the encoder-decoder model attends encoder features mainly in linear interaction with the decoder. However, growing model complexity for visual data encourages more explicit feature interaction for fine-grained information, which is currently absent in the video captioning domain. Moreover, feature aggregations methods have been used to unveil richer visual representation, either by the concatenation or using a linear layer. Though feature sets for a video semantically overlap to some extent, these approaches result in objective mismatch and feature redundancy. In addition, diversity in captions is a fundamental component of expressing one event from several meaningful perspectives, currently missing in the temporal, i.e., video captioning domain. To this end, we propose Variational Stacked Local Attention Network (VSLAN), which exploits low-rank bilinear pooling for self-attentive feature interaction and stacking multiple video feature streams in a discount fashion. Each feature stack's learned attributes contribute to our proposed diversity encoding module, followed by the decoding query stage to facilitate end-to-end diverse and natural captions without any explicit supervision on attributes. We evaluate VSLAN on MSVD and MSR-VTT datasets in terms of syntax and diversity. The CIDEr score of VSLAN outperforms current off-the-shelf methods by $7.8\%$ on MSVD and $4.5\%$ on MSR-VTT, respectively. On the same datasets, VSLAN achieves competitive results in caption diversity metrics.