Abstract:Large Language Models (LLMs) have provided a new pathway for Named Entity Recognition (NER) tasks. Compared with fine-tuning, LLM-powered prompting methods avoid the need for training, conserve substantial computational resources, and rely on minimal annotated data. Previous studies have achieved comparable performance to fully supervised BERT-based fine-tuning approaches on general NER benchmarks. However, none of the previous approaches has investigated the efficiency of LLM-based few-shot learning in domain-specific scenarios. To address this gap, we introduce FsPONER, a novel approach for optimizing few-shot prompts, and evaluate its performance on domain-specific NER datasets, with a focus on industrial manufacturing and maintenance, while using multiple LLMs -- GPT-4-32K, GPT-3.5-Turbo, LLaMA 2-chat, and Vicuna. FsPONER consists of three few-shot selection methods based on random sampling, TF-IDF vectors, and a combination of both. We compare these methods with a general-purpose GPT-NER method as the number of few-shot examples increases and evaluate their optimal NER performance against fine-tuned BERT and LLaMA 2-chat. In the considered real-world scenarios with data scarcity, FsPONER with TF-IDF surpasses fine-tuned models by approximately 10% in F1 score.
Abstract:Vision-language models, while effective in general domains and showing strong performance in diverse multi-modal applications like visual question-answering (VQA), struggle to maintain the same level of effectiveness in more specialized domains, e.g., medical. We propose a medical vision-language model that integrates large vision and language models adapted for the medical domain. This model goes through three stages of parameter-efficient training using three separate biomedical and radiology multi-modal visual and text datasets. The proposed model achieves state-of-the-art performance on the SLAKE 1.0 medical VQA (MedVQA) dataset with an overall accuracy of 87.5% and demonstrates strong performance on another MedVQA dataset, VQA-RAD, achieving an overall accuracy of 73.2%.
Abstract:Web tables contain a large amount of valuable knowledge and have inspired tabular language models aimed at tackling table interpretation (TI) tasks. In this paper, we analyse a widely used benchmark dataset for evaluation of TI tasks, particularly focusing on the entity linking task. Our analysis reveals that this dataset is overly simplified, potentially reducing its effectiveness for thorough evaluation and failing to accurately represent tables as they appear in the real-world. To overcome this drawback, we construct and annotate a new more challenging dataset. In addition to introducing the new dataset, we also introduce a novel problem aimed at addressing the entity linking task: named entity recognition within cells. Finally, we propose a prompting framework for evaluating the newly developed large language models (LLMs) on this novel TI task. We conduct experiments on prompting LLMs under various settings, where we use both random and similarity-based selection to choose the examples presented to the models. Our ablation study helps us gain insights into the impact of the few-shot examples. Additionally, we perform qualitative analysis to gain insights into the challenges encountered by the models and to understand the limitations of the proposed dataset.
Abstract:Recently, offline RL algorithms have been proposed that remain adaptive at runtime. For example, the LION algorithm \cite{lion} provides the user with an interface to set the trade-off between behavior cloning and optimality w.r.t. the estimated return at runtime. Experts can then use this interface to adapt the policy behavior according to their preferences and find a good trade-off between conservatism and performance optimization. Since expert time is precious, we extend the methodology with an autopilot that automatically finds the correct parameterization of the trade-off, yielding a new algorithm which we term AutoLION.
Abstract:Machine learning (ML) on graph-structured data has recently received deepened interest in the context of intrusion detection in the cybersecurity domain. Due to the increasing amounts of data generated by monitoring tools as well as more and more sophisticated attacks, these ML methods are gaining traction. Knowledge graphs and their corresponding learning techniques such as Graph Neural Networks (GNNs) with their ability to seamlessly integrate data from multiple domains using human-understandable vocabularies, are finding application in the cybersecurity domain. However, similar to other connectionist models, GNNs are lacking transparency in their decision making. This is especially important as there tend to be a high number of false positive alerts in the cybersecurity domain, such that triage needs to be done by domain experts, requiring a lot of man power. Therefore, we are addressing Explainable AI (XAI) for GNNs to enhance trust management by exploring combining symbolic and sub-symbolic methods in the area of cybersecurity that incorporate domain knowledge. We experimented with this approach by generating explanations in an industrial demonstrator system. The proposed method is shown to produce intuitive explanations for alerts for a diverse range of scenarios. Not only do the explanations provide deeper insights into the alerts, but they also lead to a reduction of false positive alerts by 66% and by 93% when including the fidelity metric.
Abstract:Swarm intelligence is a discipline that studies the collective behavior that is produced by local interactions of a group of individuals with each other and with their environment. In Computer Science domain, numerous swarm intelligence techniques are applied to optimization problems that seek to efficiently find best solutions within a search space. Gradual pattern mining is another Computer Science field that could benefit from the efficiency of swarm based optimization techniques in the task of finding gradual patterns from a huge search space. A gradual pattern is a rule-based correlation that describes the gradual relationship among the attributes of a data set. For example, given attributes {G,H} of a data set a gradual pattern may take the form: "the less G, the more H". In this paper, we propose a numeric encoding for gradual pattern candidates that we use to define an effective search space. In addition, we present a systematic study of several meta-heuristic optimization techniques as efficient solutions to the problem of finding gradual patterns using our search space.
Abstract:Gradual pattern extraction is a field in (KDD) Knowledge Discovery in Databases that maps correlations between attributes of a data set as gradual dependencies. A gradual dependency may take a form of "the more Attribute K , the less Attribute L". In this paper, we propose an ant colony optimization technique that uses a probabilistic approach to learn and extract frequent gradual patterns. Through computational experiments on real-world data sets, we compared the performance of our ant-based algorithm to an existing gradual item set extraction algorithm and we found out that our algorithm outperforms the later especially when dealing with large data sets.
Abstract:Knowledge graphs are an expressive and widely used data structure due to their ability to integrate data from different domains in a sensible and machine-readable way. Thus, they can be used to model a variety of systems such as molecules and social networks. However, it still remains an open question how symbolic reasoning could be realized in spiking systems and, therefore, how spiking neural networks could be applied to such graph data. Here, we extend previous work on spike-based graph algorithms by demonstrating how symbolic and multi-relational information can be encoded using spiking neurons, allowing reasoning over symbolic structures like knowledge graphs with spiking neural networks. The introduced framework is enabled by combining the graph embedding paradigm and the recent progress in training spiking neural networks using error backpropagation. The presented methods are applicable to a variety of spiking neuron models and can be trained end-to-end in combination with other differentiable network architectures, which we demonstrate by implementing a spiking relational graph neural network.
Abstract:Offline reinforcement learning algorithms still lack trust in practice due to the risk that the learned policy performs worse than the original policy that generated the dataset or behaves in an unexpected way that is unfamiliar to the user. At the same time, offline RL algorithms are not able to tune their most important hyperparameter - the proximity of the learned policy to the original policy. We propose an algorithm that allows the user to tune this hyperparameter at runtime, thereby overcoming both of the above mentioned issues simultaneously. This allows users to start with the original behavior and grant successively greater deviation, as well as stopping at any time when the policy deteriorates or the behavior is too far from the familiar one.
Abstract:Tiny machine learning (TinyML) has gained widespread popularity where machine learning (ML) is democratized on ubiquitous microcontrollers, processing sensor data everywhere in real-time. To manage TinyML in the industry, where mass deployment happens, we consider the hardware and software constraints, ranging from available onboard sensors and memory size to ML-model architectures and runtime platforms. However, Internet of Things (IoT) devices are typically tailored to specific tasks and are subject to heterogeneity and limited resources. Moreover, TinyML models have been developed with different structures and are often distributed without a clear understanding of their working principles, leading to a fragmented ecosystem. Considering these challenges, we propose a framework using Semantic Web technologies to enable the joint management of TinyML models and IoT devices at scale, from modeling information to discovering possible combinations and benchmarking, and eventually facilitate TinyML component exchange and reuse. We present an ontology (semantic schema) for neural network models aligned with the World Wide Web Consortium (W3C) Thing Description, which semantically describes IoT devices. Furthermore, a Knowledge Graph of 23 publicly available ML models and six IoT devices were used to demonstrate our concept in three case studies, and we shared the code and examples to enhance reproducibility: https://github.com/Haoyu-R/How-to-Manage-TinyML-at-Scale