Abstract:Artificial Intelligence (AI) has emerged as a key technology, driving advancements across a range of applications. Its integration into modern autonomous systems requires assuring safety. However, the challenge of assuring safety in systems that incorporate AI components is substantial. The lack of concrete specifications, and also the complexity of both the operational environment and the system itself, leads to various aspects of uncertain behavior and complicates the derivation of convincing evidence for system safety. Nonetheless, scholars proposed to thoroughly analyze and mitigate AI-specific insufficiencies, so-called AI safety concerns, which yields essential evidence supporting a convincing assurance case. In this paper, we build upon this idea and propose the so-called Landscape of AI Safety Concerns, a novel methodology designed to support the creation of safety assurance cases for AI-based systems by systematically demonstrating the absence of AI safety concerns. The methodology's application is illustrated through a case study involving a driverless regional train, demonstrating its practicality and effectiveness.
Abstract:Recent advancements in the field of Artificial Intelligence (AI) establish the basis to address challenging tasks. However, with the integration of AI, new risks arise. Therefore, to benefit from its advantages, it is essential to adequately handle the risks associated with AI. Existing risk management processes in related fields, such as software systems, need to sufficiently consider the specifics of AI. A key challenge is to systematically and transparently identify and address AI risks' root causes - also called AI hazards. This paper introduces the AI Hazard Management (AIHM) framework, which provides a structured process to systematically identify, assess, and treat AI hazards. The proposed process is conducted in parallel with the development to ensure that any AI hazard is captured at the earliest possible stage of the AI system's life cycle. In addition, to ensure the AI system's auditability, the proposed framework systematically documents evidence that the potential impact of identified AI hazards could be reduced to a tolerable level. The framework builds upon an AI hazard list from a comprehensive state-of-the-art analysis. Also, we provide a taxonomy that supports the optimal treatment of the identified AI hazards. Additionally, we illustrate how the AIHM framework can increase the overall quality of a power grid AI use case by systematically reducing the impact of identified hazards to an acceptable level.
Abstract:Machine learning (ML) on graph-structured data has recently received deepened interest in the context of intrusion detection in the cybersecurity domain. Due to the increasing amounts of data generated by monitoring tools as well as more and more sophisticated attacks, these ML methods are gaining traction. Knowledge graphs and their corresponding learning techniques such as Graph Neural Networks (GNNs) with their ability to seamlessly integrate data from multiple domains using human-understandable vocabularies, are finding application in the cybersecurity domain. However, similar to other connectionist models, GNNs are lacking transparency in their decision making. This is especially important as there tend to be a high number of false positive alerts in the cybersecurity domain, such that triage needs to be done by domain experts, requiring a lot of man power. Therefore, we are addressing Explainable AI (XAI) for GNNs to enhance trust management by exploring combining symbolic and sub-symbolic methods in the area of cybersecurity that incorporate domain knowledge. We experimented with this approach by generating explanations in an industrial demonstrator system. The proposed method is shown to produce intuitive explanations for alerts for a diverse range of scenarios. Not only do the explanations provide deeper insights into the alerts, but they also lead to a reduction of false positive alerts by 66% and by 93% when including the fidelity metric.
Abstract:Similarly to other connectionist models, Graph Neural Networks (GNNs) lack transparency in their decision-making. A number of sub-symbolic approaches have been developed to provide insights into the GNN decision making process. These are first important steps on the way to explainability, but the generated explanations are often hard to understand for users that are not AI experts. To overcome this problem, we introduce a conceptual approach combining sub-symbolic and symbolic methods for human-centric explanations, that incorporate domain knowledge and causality. We furthermore introduce the notion of fidelity as a metric for evaluating how close the explanation is to the GNN's internal decision making process. The evaluation with a chemical dataset and ontology shows the explanatory value and reliability of our method.
Abstract:The increasing importance of resource-efficient production entails that manufacturing companies have to create a more dynamic production environment, with flexible manufacturing machines and processes. To fully utilize this potential of dynamic manufacturing through automatic production planning, formal skill descriptions of the machines are essential. However, generating those skill descriptions in a manual fashion is labor-intensive and requires extensive domain-knowledge. In this contribution an ontology-based semi-automatic skill description system that utilizes production logs and industrial ontologies through inductive logic programming is introduced and benefits and drawbacks of the proposed solution are evaluated.
Abstract:In this paper we define Clinical Data Intelligence as the analysis of data generated in the clinical routine with the goal of improving patient care. We define a science of a Clinical Data Intelligence as a data analysis that permits the derivation of scientific, i.e., generalizable and reliable results. We argue that a science of a Clinical Data Intelligence is sensible in the context of a Big Data analysis, i.e., with data from many patients and with complete patient information. We discuss that Clinical Data Intelligence requires the joint efforts of knowledge engineering, information extraction (from textual and other unstructured data), and statistics and statistical machine learning. We describe some of our main results as conjectures and relate them to a recently funded research project involving two major German university hospitals.