Abstract:The mutation process in evolution strategies has been interlinked with the normal distribution since its inception. Many lines of reasoning have been given for this strong dependency, ranging from maximum entropy arguments to the need for isotropy. However, some theoretical results suggest that other distributions might lead to similar local convergence properties. This paper empirically shows that a wide range of evolutionary strategies, from the (1+1)-ES to CMA-ES, show comparable optimization performance when using a mutation distribution other than the standard Gaussian. Replacing it with, e.g., uniformly distributed mutations, does not deteriorate the performance of ES, when using the default adaptation mechanism for the strategy parameters. We observe that these results hold not only for the sphere model but also for a wider range of benchmark problems.
Abstract:Surrogate models provide efficient alternatives to computationally demanding real-world processes but often require large datasets for effective training. A promising solution to this limitation is the transfer of pre-trained surrogate models to new tasks. Previous studies have investigated the transfer of differentiable and non-differentiable surrogate models, typically assuming an affine transformation between the source and target functions. This paper extends previous research by addressing a broader range of transformations, including linear and nonlinear variations. Specifically, we consider the combination of an unknown input warping, such as one modelled by the beta cumulative distribution function, with an unspecified affine transformation. Our approach achieves transfer learning by employing a limited number of data points from the target task to optimize these transformations, minimizing empirical loss on the transfer dataset. We validate the proposed method on the widely used Black-Box Optimization Benchmark (BBOB) testbed and a real-world transfer learning task from the automobile industry. The results underscore the significant advantages of the approach, revealing that the transferred surrogate significantly outperforms both the original surrogate and the one built from scratch using the transfer dataset, particularly in data-scarce scenarios.
Abstract:Surrogate models are frequently employed as efficient substitutes for the costly execution of real-world processes. However, constructing a high-quality surrogate model often demands extensive data acquisition. A solution to this issue is to transfer pre-trained surrogate models for new tasks, provided that certain invariances exist between tasks. This study focuses on transferring non-differentiable surrogate models (e.g., random forest) from a source function to a target function, where we assume their domains are related by an unknown affine transformation, using only a limited amount of transfer data points evaluated on the target. Previous research attempts to tackle this challenge for differentiable models, e.g., Gaussian process regression, which minimizes the empirical loss on the transfer data by tuning the affine transformations. In this paper, we extend the previous work to the random forest model and assess its effectiveness on a widely-used artificial problem set - Black-Box Optimization Benchmark (BBOB) testbed, and on four real-world transfer learning problems. The results highlight the significant practical advantages of the proposed method, particularly in reducing both the data requirements and computational costs of training surrogate models for complex real-world scenarios.
Abstract:Benchmarking is one of the key ways in which we can gain insight into the strengths and weaknesses of optimization algorithms. In sampling-based optimization, considering the anytime behavior of an algorithm can provide valuable insights for further developments. In the context of multi-objective optimization, this anytime perspective is not as widely adopted as in the single-objective context. In this paper, we propose a new software tool which uses principles from unbounded archiving as a logging structure. This leads to a clearer separation between experimental design and subsequent analysis decisions. We integrate this approach as a new Python module into the IOHprofiler framework and demonstrate the benefits of this approach by showcasing the ability to change indicators, aggregations, and ranking procedures during the analysis pipeline.
Abstract:The integration of Large Language Models (LLMs) with evolutionary computation (EC) has introduced a promising paradigm for automating the design of metaheuristic algorithms. However, existing frameworks, such as the Large Language Model Evolutionary Algorithm (LLaMEA), often lack precise control over mutation mechanisms, leading to inefficiencies in solution space exploration and potentially suboptimal convergence. This paper introduces a novel approach to mutation control within LLM-driven evolutionary frameworks, inspired by theory of genetic algorithms. Specifically, we propose dynamic mutation prompts that adaptively regulate mutation rates, leveraging a heavy-tailed power-law distribution to balance exploration and exploitation. Experiments using GPT-3.5-turbo and GPT-4o models demonstrate that GPT-3.5-turbo fails to adhere to the specific mutation instructions, while GPT-4o is able to adapt its mutation based on the prompt engineered dynamic prompts. Further experiments show that the introduction of these dynamic rates can improve the convergence speed and adaptability of LLaMEA, when using GPT-4o. This work sets the starting point for better controlled LLM-based mutations in code optimization tasks, paving the way for further advancements in automated metaheuristic design.
Abstract:Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
Abstract:Boundary Representation (B-Rep) is the de facto representation of 3D solids in Computer-Aided Design (CAD). B-Rep solids are defined with a set of NURBS (Non-Uniform Rational B-Splines) surfaces forming a closed volume. To represent a surface, current works often employ the UV-grid approximation, i.e., sample points uniformly on the surface. However, the UV-grid method is not efficient in surface representation and sometimes lacks precision and regularity. In this work, we propose NeuroNURBS, a representation learning method to directly encode the parameters of NURBS surfaces. Our evaluation in solid generation and segmentation tasks indicates that the NeuroNURBS performs comparably and, in some cases, superior to UV-grids, but with a significantly improved efficiency: for training the surface autoencoder, GPU consumption is reduced by 86.7%; memory requirement drops by 79.9% for storing 3D solids. Moreover, adapting BrepGen for solid generation with our NeuroNURBS improves the FID from 30.04 to 27.24, and resolves the undulating issue in generated surfaces.
Abstract:Indicator-based (multiobjective) diversity optimization aims at finding a set of near (Pareto-)optimal solutions that maximizes a diversity indicator, where diversity is typically interpreted as the number of essentially different solutions. Whereas, in the first diversity-oriented evolutionary multiobjective optimization algorithm, the NOAH algorithm by Ulrich and Thiele, the Solow Polasky Diversity (also related to Magnitude) served as a metric, other diversity indicators might be considered, such as the parameter-free Max-Min Diversity, and the Riesz s-Energy, which features uniformly distributed solution sets. In this paper, focusing on multiobjective diversity optimization, we discuss different diversity indicators from the perspective of indicator-based evolutionary algorithms (IBEA) with multiple objectives. We examine theoretical, computational, and practical properties of these indicators, such as monotonicity in species, twinning, monotonicity in distance, strict monotonicity in distance, uniformity of maximizing point sets, computational effort for a set of size~n, single-point contributions, subset selection, and submodularity. We present new theorems -- including a proof of the NP-hardness of the Riesz s-Energy Subset Selection Problem -- and consolidate existing results from the literature. In the second part, we apply these indicators in the NOAH algorithm and analyze search dynamics through an example. We examine how optimizing with one indicator affects the performance of others and propose NOAH adaptations specific to the Max-Min indicator.
Abstract:In time-series classification, understanding model decisions is crucial for their application in high-stakes domains such as healthcare and finance. Counterfactual explanations, which provide insights by presenting alternative inputs that change model predictions, offer a promising solution. However, existing methods for generating counterfactual explanations for time-series data often struggle with balancing key objectives like proximity, sparsity, and validity. In this paper, we introduce TX-Gen, a novel algorithm for generating counterfactual explanations based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II). TX-Gen leverages evolutionary multi-objective optimization to find a diverse set of counterfactuals that are both sparse and valid, while maintaining minimal dissimilarity to the original time series. By incorporating a flexible reference-guided mechanism, our method improves the plausibility and interpretability of the counterfactuals without relying on predefined assumptions. Extensive experiments on benchmark datasets demonstrate that TX-Gen outperforms existing methods in generating high-quality counterfactuals, making time-series models more transparent and interpretable.
Abstract:In landscape-aware algorithm selection problem, the effectiveness of feature-based predictive models strongly depends on the representativeness of training data for practical applications. In this work, we investigate the potential of randomly generated functions (RGF) for the model training, which cover a much more diverse set of optimization problem classes compared to the widely-used black-box optimization benchmarking (BBOB) suite. Correspondingly, we focus on automated algorithm configuration (AAC), that is, selecting the best suited algorithm and fine-tuning its hyperparameters based on the landscape features of problem instances. Precisely, we analyze the performance of dense neural network (NN) models in handling the multi-output mixed regression and classification tasks using different training data sets, such as RGF and many-affine BBOB (MA-BBOB) functions. Based on our results on the BBOB functions in 5d and 20d, near optimal configurations can be identified using the proposed approach, which can most of the time outperform the off-the-shelf default configuration considered by practitioners with limited knowledge about AAC. Furthermore, the predicted configurations are competitive against the single best solver in many cases. Overall, configurations with better performance can be best identified by using NN models trained on a combination of RGF and MA-BBOB functions.