Abstract:Recent advancements in learning latent codes derived from high-dimensional shapes have demonstrated impressive outcomes in 3D generative modeling. Traditionally, these approaches employ a trained autoencoder to acquire a continuous implicit representation of source shapes, which can be computationally expensive. This paper introduces a novel framework, spectral-domain diffusion for high-quality shape generation SpoDify, that utilizes singular value decomposition (SVD) for shape encoding. The resulting eigenvectors can be stored for subsequent decoding, while generative modeling is performed on the eigenfeatures. This approach efficiently encodes complex meshes into continuous implicit representations, such as encoding a 15k-vertex mesh to a 512-dimensional latent code without learning. Our method exhibits significant advantages in scenarios with limited samples or GPU resources. In mesh generation tasks, our approach produces high-quality shapes that are comparable to state-of-the-art methods.
Abstract:The Neural Tangent Kernel (NTK) viewpoint represents a valuable approach to examine the training dynamics of Physics-Informed Neural Networks (PINNs) in the infinite width limit. We leverage this perspective and focus on the case of nonlinear Partial Differential Equations (PDEs) solved by PINNs. We provide theoretical results on the different behaviors of the NTK depending on the linearity of the differential operator. Moreover, inspired by our theoretical results, we emphasize the advantage of employing second-order methods for training PINNs. Additionally, we explore the convergence capabilities of second-order methods and address the challenges of spectral bias and slow convergence. Every theoretical result is supported by numerical examples with both linear and nonlinear PDEs, and we validate our training method on benchmark test cases.
Abstract:Physics-Informed Neural Networks (PINNs) are Neural Network architectures trained to emulate solutions of differential equations without the necessity of solution data. They are currently ubiquitous in the scientific literature due to their flexible and promising settings. However, very little of the available research provides practical studies that aim for a better quantitative understanding of such architecture and its functioning. In this paper, we analyze the performance of PINNs for various architectural hyperparameters and algorithmic settings based on a novel error metric and other factors such as training time. The proposed metric and approach are tailored to evaluate how well a PINN generalizes to points outside its training domain. Besides, we investigate the effect of the algorithmic setup on the outcome prediction of a PINN, inside and outside its training domain, to explore the effect of each hyperparameter. Through our study, we assess how the algorithmic setup of PINNs influences their potential for generalization and deduce the settings which maximize the potential of a PINN for accurate generalization. The study that we present returns insightful and at times counterintuitive results on PINNs. These results can be useful in PINN applications when defining the model and evaluating it.