Abstract:Boundary Representation (B-Rep) is the de facto representation of 3D solids in Computer-Aided Design (CAD). B-Rep solids are defined with a set of NURBS (Non-Uniform Rational B-Splines) surfaces forming a closed volume. To represent a surface, current works often employ the UV-grid approximation, i.e., sample points uniformly on the surface. However, the UV-grid method is not efficient in surface representation and sometimes lacks precision and regularity. In this work, we propose NeuroNURBS, a representation learning method to directly encode the parameters of NURBS surfaces. Our evaluation in solid generation and segmentation tasks indicates that the NeuroNURBS performs comparably and, in some cases, superior to UV-grids, but with a significantly improved efficiency: for training the surface autoencoder, GPU consumption is reduced by 86.7%; memory requirement drops by 79.9% for storing 3D solids. Moreover, adapting BrepGen for solid generation with our NeuroNURBS improves the FID from 30.04 to 27.24, and resolves the undulating issue in generated surfaces.
Abstract:A great interest has arisen in using Deep Generative Models (DGM) for generative design. When assessing the quality of the generated designs, human designers focus more on structural plausibility, e.g., no missing component, rather than visual artifacts, e.g., noises in the images. Meanwhile, commonly used metrics such as Fr\'echet Inception Distance (FID) may not evaluate accurately as they tend to penalize visual artifacts instead of structural implausibility. As such, FID might not be suitable to assess the performance of DGMs for a generative design task. In this work, we propose to encode the input designs with a simple Denoising Autoencoder (DAE) and measure the distribution distance in the latent space thereof. We experimentally test our DAE-based metrics with FID and other state-of-the-art metrics on three data sets: compared to FID and some more recent works, e.g., FD$_\text{DINO-V2}$ and topology distance, DAE-based metrics can effectively detect implausible structures and are more consistent with structural inspection by human experts.
Abstract:Deep Generative Models (DGMs) are widely used to create innovative designs across multiple industries, ranging from fashion to the automotive sector. In addition to generating images of high visual quality, the task of structural design generation imposes more stringent constrains on the semantic expression, e.g., no floating material or missing part, which we refer to as plausibility in this work. We delve into the impact of noise schedules of diffusion models on the plausibility of the outcome: there exists a range of noise levels at which the model's performance decides the result plausibility. Also, we propose two techniques to determine such a range for a given image set and devise a novel parametric noise schedule for better plausibility. We apply this noise schedule to the training and sampling of the well-known diffusion model EDM and compare it to its default noise schedule. Compared to EDM, our schedule significantly improves the rate of plausible designs from 83.4% to 93.5% and Fr\'echet Inception Distance (FID) from 7.84 to 4.87. Further applications of advanced image editing tools demonstrate the model's solid understanding of structure.
Abstract:Generative Engineering Design approaches driven by Deep Generative Models (DGM) have been proposed to facilitate industrial engineering processes. In such processes, designs often come in the form of images, such as blueprints, engineering drawings, and CAD models depending on the level of detail. DGMs have been successfully employed for synthesis of natural images, e.g., displaying animals, human faces and landscapes. However, industrial design images are fundamentally different from natural scenes in that they contain rich structural patterns and long-range dependencies, which are challenging for convolution-based DGMs to generate. Moreover, DGM-driven generation process is typically triggered based on random noisy inputs, which outputs unpredictable samples and thus cannot perform an efficient industrial design exploration. We tackle these challenges by proposing a novel model Self-Attention Adversarial Latent Autoencoder (SA-ALAE), which allows generating feasible design images of complex engineering parts. With SA-ALAE, users can not only explore novel variants of an existing design, but also control the generation process by operating in latent space. The potential of SA-ALAE is shown by generating engineering blueprints in a real automotive design task.