Centre for Artificial Intelligence, ZHAW School of Engineering, Winterthur, Switzerland, European Centre for Living Technology
Abstract:We present a novel intelligent-system architecture called "Dynamic Net Architecture" (DNA) that relies on recurrence-stabilized networks and discuss it in application to vision. Our architecture models a (cerebral cortical) area wherein elementary feature neurons encode details of visual structures, and coherent nets of such neurons model holistic object structures. By interpreting smaller or larger coherent pieces of an area network as complex features, our model encodes hierarchical feature representations essentially different than artificial neural networks (ANNs). DNA models operate on a dynamic connectionism principle, wherein neural activations stemming from initial afferent signals undergo stabilization through a self-organizing mechanism facilitated by Hebbian plasticity alongside periodically tightening inhibition. In contrast to ANNs, which rely on feed-forward connections and backpropagation of error, we posit that this processing paradigm leads to highly robust representations, as by employing dynamic lateral connections, irrelevant details in neural activations are filtered out, freeing further processing steps from distracting noise and premature decisions. We empirically demonstrate the viability of the DNA by composing line fragments into longer lines and show that the construction of nets representing lines remains robust even with the introduction of up to $59\%$ noise at each spatial location. Furthermore, we demonstrate the model's capability to reconstruct anticipated features from partially obscured inputs and that it can generalize to patterns not observed during training. In this work, we limit the DNA to one cortical area and focus on its internals while providing insights into a standalone area's strengths and shortcomings. Additionally, we provide an outlook on how future work can implement invariant object recognition by combining multiple areas.
Abstract:Printed mathematical expression recognition (MER) models are usually trained and tested using LaTeX-generated mathematical expressions (MEs) as input and the LaTeX source code as ground truth. As the same ME can be generated by various different LaTeX source codes, this leads to unwanted variations in the ground truth data that bias test performance results and hinder efficient learning. In addition, the use of only one font to generate the MEs heavily limits the generalization of the reported results to realistic scenarios. We propose a data-centric approach to overcome this problem, and present convincing experimental results: Our main contribution is an enhanced LaTeX normalization to map any LaTeX ME to a canonical form. Based on this process, we developed an improved version of the benchmark dataset im2latex-100k, featuring 30 fonts instead of one. Second, we introduce the real-world dataset realFormula, with MEs extracted from papers. Third, we developed a MER model, MathNet, based on a convolutional vision transformer, with superior results on all four test sets (im2latex-100k, im2latexv2, realFormula, and InftyMDB-1), outperforming the previous state of the art by up to 88.3%.
Abstract:Humans and animals recognize objects irrespective of the beholder's point of view, which may drastically change their appearances. Artificial pattern recognizers also strive to achieve this, e.g., through translational invariance in convolutional neural networks (CNNs). However, both CNNs and vision transformers (ViTs) perform very poorly on rotated inputs. Here we present artificial mental rotation (AMR), a novel deep learning paradigm for dealing with in-plane rotations inspired by the neuro-psychological concept of mental rotation. Our simple AMR implementation works with all common CNN and ViT architectures. We test it on ImageNet, Stanford Cars, and Oxford Pet. With a top-1 error (averaged across datasets and architectures) of $0.743$, AMR outperforms the current state of the art (rotational data augmentation, average top-1 error of $0.626$) by $19\%$. We also easily transfer a trained AMR module to a downstream task to improve the performance of a pre-trained semantic segmentation model on rotated CoCo from $32.7$ to $55.2$ IoU.
Abstract:While deep neural networks have shown impressive results in automatic speaker recognition and related tasks, it is dissatisfactory how little is understood about what exactly is responsible for these results. Part of the success has been attributed in prior work to their capability to model supra-segmental temporal information (SST), i.e., learn rhythmic-prosodic characteristics of speech in addition to spectral features. In this paper, we (i) present and apply a novel test to quantify to what extent the performance of state-of-the-art neural networks for speaker recognition can be explained by modeling SST; and (ii) present several means to force respective nets to focus more on SST and evaluate their merits. We find that a variety of CNN- and RNN-based neural network architectures for speaker recognition do not model SST to any sufficient degree, even when forced. The results provide a highly relevant basis for impactful future research into better exploitation of the full speech signal and give insights into the inner workings of such networks, enhancing explainability of deep learning for speech technologies.
Abstract:Automating the monitoring of industrial processes has the potential to enhance efficiency and optimize quality by promptly detecting abnormal events and thus facilitating timely interventions. Deep learning, with its capacity to discern non-trivial patterns within large datasets, plays a pivotal role in this process. Standard deep learning methods are suitable to solve a specific task given a specific type of data. During training, the algorithms demand large volumes of labeled training data. However, due to the dynamic nature of processes and the environment, it is impractical to acquire the needed data for standard deep learning training for every slightly different case anew. Deep transfer learning offers a solution to this problem. By leveraging knowledge from related tasks and accounting for variations in data distributions, this learning framework solves new tasks even with little or no additional labeled data. The approach bypasses the need to retrain a model from scratch for every new setup and dramatically reduces the labeled data requirement. This survey provides an in-depth review of deep transfer learning, examining the problem settings of transfer learning and classifying the prevailing deep transfer learning methods. Moreover, we delve into applying deep transfer learning in the context of a broad spectrum of time series anomaly detection tasks prevalent in primary industrial domains, e.g., manufacturing process monitoring, predictive maintenance, energy management, and infrastructure facility monitoring. We conclude this survey by underlining the challenges and limitations of deep transfer learning in industrial contexts. We also provide practical directions for solution design and implementation for these tasks, leading to specific, actionable suggestions.
Abstract:Patient monitoring in intensive care units, although assisted by biosensors, needs continuous supervision of staff. To reduce the burden on staff members, IT infrastructures are built to record monitoring data and develop clinical decision support systems. These systems, however, are vulnerable to artifacts (e.g. muscle movement due to ongoing treatment), which are often indistinguishable from real and potentially dangerous signals. Video recordings could facilitate the reliable classification of biosignals using object detection (OD) methods to find sources of unwanted artifacts. Due to privacy restrictions, only blurred videos can be stored, which severely impairs the possibility to detect clinically relevant events such as interventions or changes in patient status with standard OD methods. Hence, new kinds of approaches are necessary that exploit every kind of available information due to the reduced information content of blurred footage and that are at the same time easily implementable within the IT infrastructure of a normal hospital. In this paper, we propose a new method for exploiting information in the temporal succession of video frames. To be efficiently implementable using off-the-shelf object detectors that comply with given hardware constraints, we repurpose the image color channels to account for temporal consistency, leading to an improved detection rate of the object classes. Our method outperforms a standard YOLOv5 baseline model by +1.7% mAP@.5 while also training over ten times faster on our proprietary dataset. We conclude that this approach has shown effectiveness in the preliminary experiments and holds potential for more general video OD in the future.
Abstract:The existence of adversarial attacks on convolutional neural networks (CNN) questions the fitness of such models for serious applications. The attacks manipulate an input image such that misclassification is evoked while still looking normal to a human observer -- they are thus not easily detectable. In a different context, backpropagated activations of CNN hidden layers -- "feature responses" to a given input -- have been helpful to visualize for a human "debugger" what the CNN "looks at" while computing its output. In this work, we propose a novel detection method for adversarial examples to prevent attacks. We do so by tracking adversarial perturbations in feature responses, allowing for automatic detection using average local spatial entropy. The method does not alter the original network architecture and is fully human-interpretable. Experiments confirm the validity of our approach for state-of-the-art attacks on large-scale models trained on ImageNet.
Abstract:With the spread of COVID-19 over the world, the need arose for fast and precise automatic triage mechanisms to decelerate the spread of the disease by reducing human efforts e.g. for image-based diagnosis. Although the literature has shown promising efforts in this direction, reported results do not consider the variability of CT scans acquired under varying circumstances, thus rendering resulting models unfit for use on data acquired using e.g. different scanner technologies. While COVID-19 diagnosis can now be done efficiently using PCR tests, this use case exemplifies the need for a methodology to overcome data variability issues in order to make medical image analysis models more widely applicable. In this paper, we explicitly address the variability issue using the example of COVID-19 diagnosis and propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans through leveraging the idea of deep auto-encoders. The proposed prepossessing architecture (PrepNet) (i) is jointly trained on multiple CT scan datasets and (ii) is capable of extracting improved discriminative features for improved diagnosis. Experimental results on three public datasets (SARS-COVID-2, UCSD COVID-CT, MosMed) show that our model improves cross-dataset generalization by up to $11.84$ percentage points despite a minor drop in within dataset performance.
Abstract:An implicit but pervasive hypothesis of modern computer vision research is that convolutional neural network (CNN) architectures that perform better on ImageNet will also perform better on other vision datasets. We challenge this hypothesis through an extensive empirical study for which we train 500 sampled CNN architectures on ImageNet as well as 8 other image classification datasets from a wide array of application domains. The relationship between architecture and performance varies wildly, depending on the datasets. For some of them, the performance correlation with ImageNet is even negative. Clearly, it is not enough to optimize architectures solely for ImageNet when aiming for progress that is relevant for all applications. Therefore, we identify two dataset-specific performance indicators: the cumulative width across layers as well as the total depth of the network. Lastly, we show that the range of dataset variability covered by ImageNet can be significantly extended by adding ImageNet subsets restricted to few classes.
Abstract:We present preliminary results from our sixth placed entry to the Flatland international competition for train rescheduling, including two improvements for optimized reinforcement learning (RL) training efficiency, and two hypotheses with respect to the prospect of deep RL for complex real-world control tasks: first, that current state of the art policy gradient methods seem inappropriate in the domain of high-consequence environments; second, that learning explicit communication actions (an emerging machine-to-machine language, so to speak) might offer a remedy. These hypotheses need to be confirmed by future work. If confirmed, they hold promises with respect to optimizing highly efficient logistics ecosystems like the Swiss Federal Railways railway network.