Abstract:Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control. InCrowd-VI features 58 sequences totaling a 5 km trajectory length and 1.5 hours of recording time, including RGB, stereo images, and IMU measurements. The dataset captures important challenges such as pedestrian occlusions, varying crowd densities, complex layouts, and lighting changes. Ground-truth trajectories, accurate to approximately 2 cm, are provided in the dataset, originating from the Meta Aria project machine perception SLAM service. In addition, a semi-dense 3D point cloud of scenes is provided for each sequence. The evaluation of state-of-the-art visual odometry (VO) and SLAM algorithms on InCrowd-VI revealed severe performance limitations in these realistic scenarios, demonstrating the need and value of the new dataset to advance SLAM research for visually impaired navigation in complex indoor environments.
Abstract:Printed mathematical expression recognition (MER) models are usually trained and tested using LaTeX-generated mathematical expressions (MEs) as input and the LaTeX source code as ground truth. As the same ME can be generated by various different LaTeX source codes, this leads to unwanted variations in the ground truth data that bias test performance results and hinder efficient learning. In addition, the use of only one font to generate the MEs heavily limits the generalization of the reported results to realistic scenarios. We propose a data-centric approach to overcome this problem, and present convincing experimental results: Our main contribution is an enhanced LaTeX normalization to map any LaTeX ME to a canonical form. Based on this process, we developed an improved version of the benchmark dataset im2latex-100k, featuring 30 fonts instead of one. Second, we introduce the real-world dataset realFormula, with MEs extracted from papers. Third, we developed a MER model, MathNet, based on a convolutional vision transformer, with superior results on all four test sets (im2latex-100k, im2latexv2, realFormula, and InftyMDB-1), outperforming the previous state of the art by up to 88.3%.